PRODUCTION TECHNOLOGY, PATENT AND CARBON EMISSION

Soumyananda Dinda

Chandragupt Institute of Management Patna

BACKGROUND

- Climate Change challenges to the existing production technology
- Clean technology
- Innovation and Patent Rights

PATENT

- Patent is an important legal document, issued by an authorized government agent, granting the right to exclude anyone else from the production or use of a specific new device, or process' for certain defined years
- The right embedded in the patent can be assigned by the inventor to somebody else, usually to his employer, a corporation, and/or sold to or licensed for use by somebody
- Purpose of patent system is to encourage technological progress

PRODUCTION TECHNOLOGY

- Patent registration is considered as a proxy for innovation and provides country's technological capabilities
- The patent registration of a country shows the trends in the improvement of technological strength
- production design patent (DGPNT) as a proxy of production technology
- Production design patent is issued for new, original and ornamental design for an article of manufacture

US PATENT AT USPTO

- The US economy dominates in the world
- The US might have been attempted to innovate green technology
- Patent registration at the USPTO is high and dominates its position in the world over last several decades.
- The US should have the efficient technology both in terms of productivity and energy saving innovations
- ORNL shows the US is on the top polluters list
- It contradicts general believe that the modern sophisticated upgrading technology helps to *mitigate climate change*.
- How far is it true?

OBJECTIVE

- Does the upgraded technology reduce emission?
- Is it true?
- What is the causal relationship among upgraded technology, income, emission?
- What will be the policy?

THEORETICAL BACKGROUND

$$y = f(k) \qquad f_k > 0 \qquad f_{kk} < 0$$

$$f_{k} > 0$$

$$f_{kk} < 0$$

$$p = \frac{\mu y}{A}$$

$$0 < \mu < 1$$

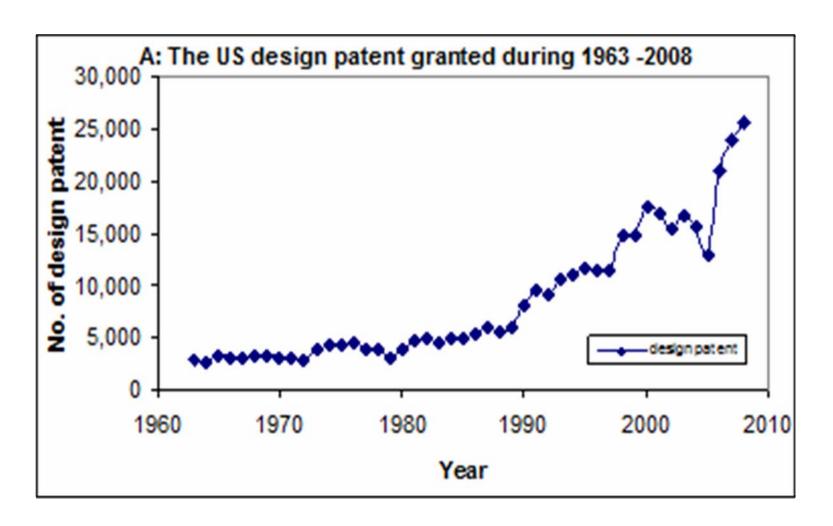
 $\ln p = \ln \mu + \ln y - \ln A$

$$\frac{\dot{p}}{p} = \frac{\dot{y}}{y} - \frac{\dot{A}}{A}$$

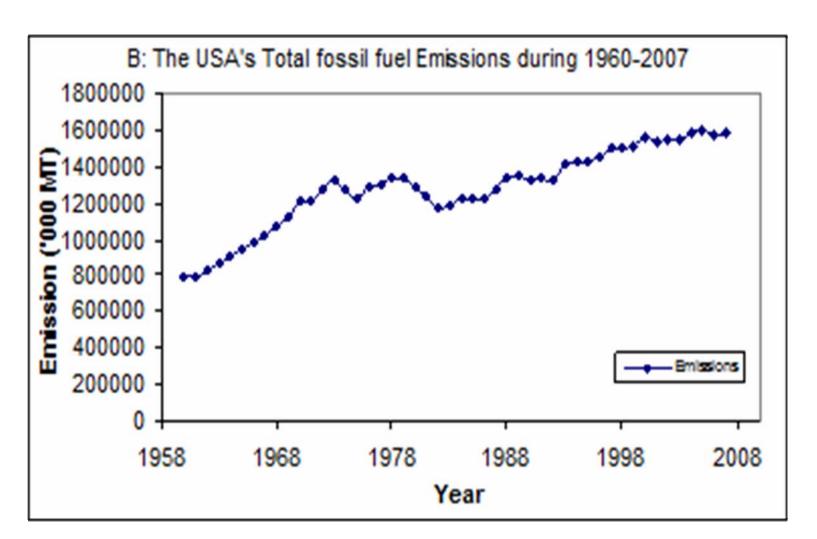
CONT...

$$\mu = \mu_0 e^{\theta t}$$

$$\ln \mu = \ln \mu_0 + \theta t$$


$$\ln p = \ln \mu_0 + \theta t + \ln y - \ln A$$

$$\frac{\dot{p}}{p} = \theta + \frac{\dot{y}}{y} - \frac{A}{A}$$


DATA

- CO2 Emission taken from Carbon Dioxide Information Analysis Centre (CDIAC)
- DGPNT from USPTO
- RGDP from PWT6.3
- o Period: 1963 2007

FIGURE 1: TRENDS OF DESIGN PATENTS

FIGURE 1: TRENDS OF TOTALCO $_2$ EMISSION

FIGURE 1: TRENDS OF PER CAPITA CO_2 EMISSION

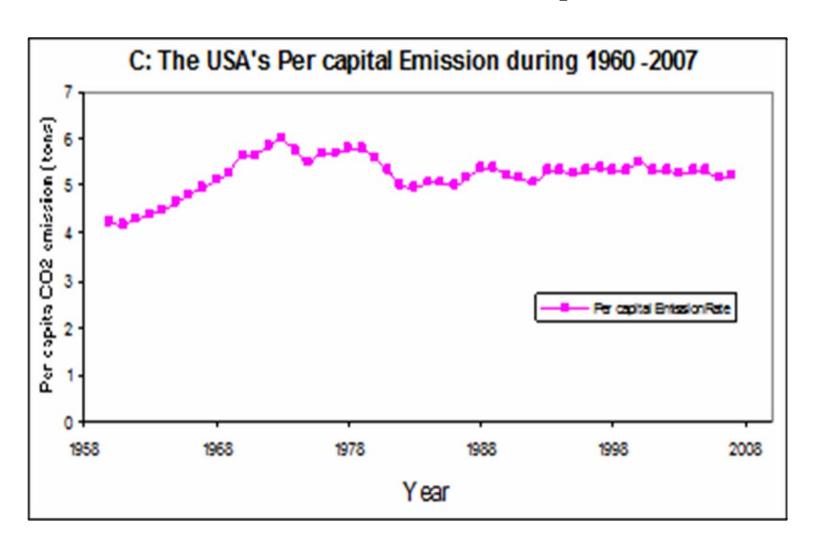
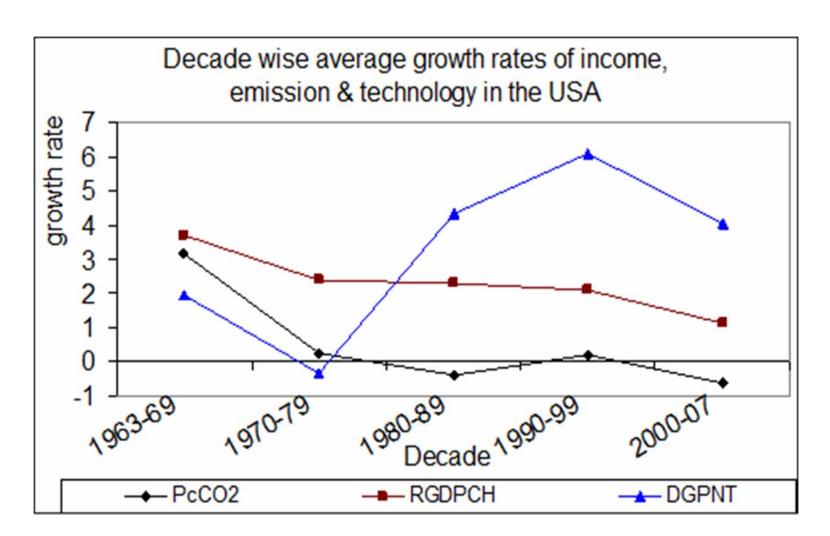



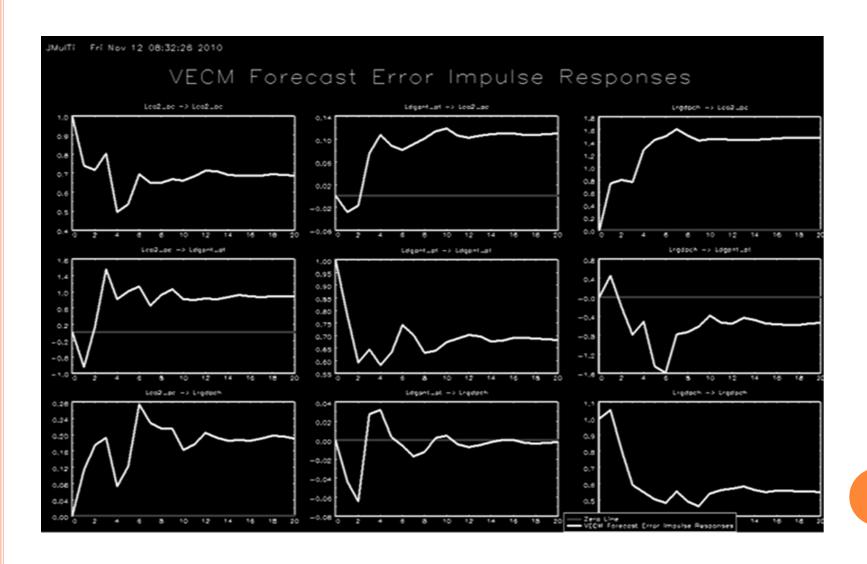
TABLE 1: DECADE-WISE AVERAGE GROWTH RATE OF INCOME (RGDPCH), $\rm CO_2$ EMISSION (PCCO2) AND PRODUCTION DESIGN PATENT (DGPNT) IN THE USA

Decade	PcCO2	RGDPCH	DGPNT
1963-69	3.18	3.69	1.96
1970-79	0.28	2.40	-0.30
1980-89	-0.38	2.29	4.34
1990-99	0.23	2.08	6.08
2000-07	-0.63	1.11	4.04
1963-07	0.39	2.24	4.76

FIGURE 2: DECADE-WISE AVERAGE GROWTH RATES OF INCOME, EMISSION AND PRODUCTION DESIGN PATENT IN THE USA

TABLE 2: RESULTS OF UNIT ROOT AND CO-INTEGRATION TEST

A: Unit root test							
		ADF		KPSS			
Variables	Level		1st Differen	nce	Trend Stat	ionary	
lnCO2	-3.15		-4.91***		0.1515**		
ln GDPNT	-2.19		-5.304***		0.2301***		
ln RGDPCH	-0.86		-5.13**		0.1526**		
B: Co-integration Test							
		Eigen valu	e	LR		Critical value 5%	Critical value 1%
H_0 : $r = 0$ H_1 :		0.435		44.408**		42.44	48.45
H_0 : $r = 1$ H_1 :		0.299		19.856		25.32	30.45


TABLE 3: RESULTS OF VECTOR ERROR CORRECTION MODEL

Estimated Co integration relation					
	ln PcCO2	In DGPNT	In RGDPCH		
Cointigrating vector	1	-0.169 (-2.597)	-2.819 (-4.66)		
Loading coefficients					
Variables	D(ln PcCO ₂)	D(ln DGPNT)	D(ln RGDPCH)		
Error Correction	-0.233 *** (-2.93)	0.366 (0.768)	0.083 (1.277)		
Deterministic term					
Constant	-5.999 *** (-2.934)	9.394 (0.767)	2.15 (1.293)		
Trend (t)	-0.016 *** (-2.97)	0.028 (0.832)	0.006 (1.244)		

TABLE 3: RESULTS OF VECM (CONT.....)

VAR					
Variables	D(ln PcCO ₂)	D(ln DGPNT)	D(ln RGDPCH)		
$D(LPcCO_2(-1))$	-0.027 (-0.164)	-1.215 (-1.24)	0.03 (0.226)		
D(LDGPNT(-1))	-0.068 ** (-2.31)	-0.157 (-0.89)	-0.03 (-1.24)		
D(LRGDPCH(-1))	0.087 (0.37)	1.487 (1.053)	0.285 (1.49)		
D(LPcCO ₂ (-2))	0.035 (0.219)	0.171 (0.18)	-0.034 (-0.265)		
D(LDGPNT(-2))	-0.010 (-0.283)	-0.179 (-0.863)	-0.011 (-0.385)		
D(LRGDPCH(-2))	-0.437 ** (-2.299)	1.073 (0.94)	-0.081 (-0.521)		
$D(LPcCO_2(-3))$	0.243 (1.6)	1.147 (1.26)	0.004 (0.033)		
D(LDGPNT(-3))	0.077 ** (2.278)	0.056 (0.28)	0.08 *** (2.91)		
D(LRGDPCH(-3))	-0.39 (-1.94)	0.17 (0.14)	-0.011 (-0.065)		

FIGURE 3: VECM FORECAST ERROR IMPULSE RESPONSES

CONCLUSION

- Production design innovations raise carbon emission in long run
- progress in production technology reduce CO₂ emission growth in short run
- A specific kind of causality running from production design innovation to CO_2 emission in the USA during 1963-2007
- The impulse responses of production design patents suggest shortening the patent rights

Thank you