Second National Research Conference on Climate Change, Delhi, November 5-6, 2011

Climate footprint of selected Indian emission sectors

Pankaj Sadavarte, Karan Kathiar, Gouri Nair, Chandra Venkataraman

Department of Chemical Engineering Indian Institute of Technology Bombay

Climate change effects have a regional character

Surface solar dimming is increasing

From 1981–2006, the rate of clear-sky dimming over India, attributed to aerosols, is 6 W/m²-decade.(*Kumari et al.*, 2009, GRL).

Aerosol mediated fog events in winter

Northern Grid
Trips, Flights Hit
At Delhi Airport
At Delhi Airport

Killed in train Collisions

Killed in Kolkata, Date: Jan 3, The Times Of India Kolkata; Date: Jan 28, 2010

Over 50 flights cancelled as fog blankets Capital

The Times Of India Delhi; Date: Jan 28, 2010

Record at fog-hit IGI: 54 flights cancelled

Dense Fog Conditions Force Airport To Implement Low Visibility Procedures For 16 Hours.

Three die, 17 hurt in train mishap due to fog in UP

Mumbai Mirror ; Date: Jan 17, 2010

Outline

- What do we know about S. Asian aerosol sources?
- How good is this understanding?
- Frameworks for mitigation.

Region specific sources

Unregulated vehicular emissions

Emission Inventory

 $\langle E_P = \rangle$ Activity, \times Emission Factor_{l,P}

Fuel consumption/Production

Emissions per unit fuel consumption/Production

Default Emission Factors

(IPCC 2006, EMEP 2009)

TIER 1

- Average emission factors for a broad source category
- Default fuel characteristics

- Country specific details
- TIER 2 Fuel characteristics (like carbon content or ash content)
 - Technological details

TIER 3

- Combustion technology
- Operating parameters
- Age of the equipment
- Pollution control equipment employed

Metrics of Climate Change

GWP values used

Metrics calculated using parameters from literature (Fuglestvedt et al. 2007, Bond and Sun 2005)

Creating an emissions inventory ~Tier 3 detail

Thermal power plants

Transport sector - roadways

Brick production

Discontinuous sources: agricultural residue burning

Estimated fuel consumption

Fuel consumed in selected four sectors for year 2005

Coal consumption – Thermal power plant (330 million tonne/yr)
Petroleum consumption – Road transport (53 million tonne/yr)
Biomass consumption – Agricultural residue burning (101 million tonne/yr)

Technology-linked fuel consumption

Sectoral emissions: Green house gases

Ag. Residue burn – Mainly responsible for methane emissions **Thermal Power Plant** – Major source of CO₂ due to massive consumption of fossil fuel especially coal

Sectoral emissions: Ozone precursor

NOx emissions were emitted from burning of fossil fuels on large scale, i.e. transport and thermal power plants

Uncontrolled and incomplete combustions from agricultural residue burning caused higher CO emissions

Sectoral emissions: Short lived forcers

Black carbon, was highly emitted from transport sector which made the use of super-emitter vehicles fraction.

SO₂ emissions were largely emitted from thermal power plant which consumed coal about 330 million tonnes

Organic carbon was found to be high from agricultural residue burnings

Emissions summary – Black carbon

Emissions (Gg/year)

ВС	302
OC	397

Frameworks for mitigation

GWP		
BC	OC	SO4
608	-70.8	-40

PM_{2.5} Emissions (Gg/year)

Climate footprint of emission sectors

Among long-lived GHG, CO2 from thermal power plant was the highest

Among short-lived forcers BC was the dominant species warming the atmosphere mainly from transport. While OC from ag. residue burn and SO2 from power plant showed negative effect

Conclusions

- Sectoral methodologies are developed for energy use and emissions estimation.
- Technology-linked emissions estimation is needed for accurate magnitudes of total and sectors emissions.
- Short-lived forcers offer two important benefits: airquality and health mitigation, immediate reduction in atmospheric warming (in the near term).
- Among sectors considered, diesel transport, agricultural residue burning and brick production offer mitigation potential based on short-lived forcers.
- Frameworks based on multiple criteria allow mitigation strategies which offer simultaneous benefits for air quality and climate.

THANK YOU