Ministry of Environment and Sustainable Development Direction of Environment and Classified Establishment Centre for Air Quality Management (CGQA)

Regional Consutation on Air Quality, Clean Vehicles and Sustainable Mobility Roadmap

August 24 - 25, 2016, Nairobi

Air Quality Monitoring
Air Quality Index System and forecasting model in Senegal

Presented by

Mr. André Jacques M. Ngor DIOH

Senegal overview

Senegal is bounded by:

- ✓ Atlantic ocean in west:
- ✓ Mauritania in north and east;
- ✓ Mali in east;
- ✓ Guinea and Guinea Bissau in south

Capital city is Dakar

Background and justification

Senegalese Government:

- ✓ being aware of the need to improve the quality of life of people;
- ✓ taking into account the impacts of air pollution on the human health and the environment (the health cost of air pollution is estimated at 65 billion in 2001according to a study of the World Bank),

created in 2009 a Centre for Air Quality Management (CGQA).

Background and justification

The centre was funded by the Nordic Development Fund (NDF) and the Senegalese Government.

The setup was done through the fourth component of the PAMU (Urban Mobility Improvement Program) implemented by the ministry in charge of transport, through Executive Council of Dakar Urban Transport (CETUD) which consisted of the creation of:

- 1. Centre for Air Quality Management (Centre de Gestion de la Qualité de l'Air CGQA);
- 2. Motor Vehicles Technical Control Centre (Centre de Contrôle Technique des Véhicules Automobiles CCTVA)

Background and justification

- ✓ Due to its objectives of environment watch, the centre has been placed under the supervision of the Ministry of Environment and Sustainable Development
- ✓ It has five monitoring stations and a van mobile laboratory.

Objectives

- ✓ keep on watching the ambient air pollution,
- ✓ Inform the public on air quality and provide reports to the authorities for decision making,
- ✓ Advocate realistic measures for improving air quality,
- ✓ Promote the establishment of a committee on air quality.

Pollutants monitored by CGQA

Monitored pollutant	Source	. Health effects
Nitrogen Oxides (NOx)	Transport, combustion plant,	Asthma, susceptibility of children to bronchial infections.
Ozone (O ₃)	Transformation of NOx and hydrocarbons in the presence of sunlight.	Cough, eyes irritation, etc.
Benzene Toluene Xylene (BTX)	Transport, industry, nature	Nervous system disorders, loss of consciousness
Particulates matter PM2.5 and PM10	Transport, industry and nature (dust and sandstorm)	Respiratory and cardiovascular diseases
Carbon monoxide (CO)	Transport	Chronic intoxication, headaches, vertigos, cardiovascular problems
Sulphur dioxide (SO2)	Fuel and coal combustion	Adult acute respiratory symptoms and children breathlessness.

How we measure air quality?

- □ Continuous measurement
 - Fixed monitoring stations with ambient air analyzers
 - Mobile laboratory with analyzers which enable to measure in areas not covered by the fixed stations

How we measure air quality?

Ambient air analyzers inside the station

- Continuous measurement
 - Gaz and particulates analyzers that determine pollutants concentrations
 - Real time data : instant alert possible
 - Measurement campaigns (mobile laboratory)

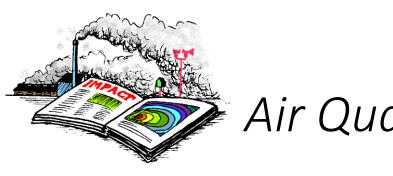
Location of the stations

Stations type and monitored pollutants per station

#	Site name	Coordi	nates	Station type
		N	W	
1	Bd Republique	14deg 40' 14''	17deg 26'11"	Urban roadside
2	Medina	14deg 41'14''	17deg 26'54''	Suburban roadside
3	HLM4	14deg 42'37''	17deg 27'09''	Urban background
4	BelAir	14deg 40'50''	17deg 25'58''	Urban industrial rd
5	Yoff	14deg 44'51''	17deg 27'35"	Regional background

		Parameters							
	Site	SO2	NOx	NO2	PM10	PM2,5	О3	CO	Benz
1	Bd.Republique	X	X	X	X	X	X	X	
2	Medina		X	X	X			X	
3	HLM4	X	X	X	X		X		
4	BelAir	X	X	X	X	X			X
5	Yoff		X	X	X		X		

Location of the stations


Meteorological parameters are also measured at HLM station

- ✓ Temperature
- ✓ Relative humidity
- ✓ Net radiation
- ✓ Pressure
- ✓ Wind speed
- ✓ Wind direction

- ✓ Index for reporting daily air quality on the web www.air-dakar.org and www.denv.gouv.sn;
- ✓ Tells how clean or polluted the air is, and what associated health effects might be a concern;
- ✓ Five pollutants are used to calculate the AQI: O₃ (ozone), PM (particulate matter), CO (carbon monoxide), SO₂ (sulphur dioxide) and NO₂ (nitrogen dioxide).

AQI = Air Quality Index

Air Quality Index (AQI) values	Levels of Health Concern	Colors
When the AQI is in this range	air quality conditions are:	as symbolized by this color:
0 – 50	Good	Green
51 - 100	Moderate	yellow
101 - 200	Unhealthy	Orange
> 200	Very Unhealthy	Red

The AQI = index for reporting daily air quality:

- how clean or polluted is the air,
 - Indicate associated health concerns you should be aware of.

$$AQI = \frac{\text{Pollutant concentration}}{\text{Pollutant limit value}} \times 100$$

Guidelines and limit values (µg/m³) WHO & Senegal

Pollutant	Averaging	Maximum Limit Value	
	time	WHO	Senegal
Sulphur Dioxide (SO ₂)	1 hour	500 (10 min)	-
	24 hours	125	125
	Year	50	50
Nitrogen Dioxide (NO ₂)	1 hour	200	200
	Year	40-50	40
Ozone (O ₃)	1 hour	150-200	-
	8 hours	120	120
Carbon Monoxide (CO)	1 hour	30 000	-
	8 hours	10 000	30 000 (24h)
Particles <10 µm (PM10)	24 hours	50 *	260
	Year	20 *	80
Lead (Pb)	Year	0.5-1,0	2

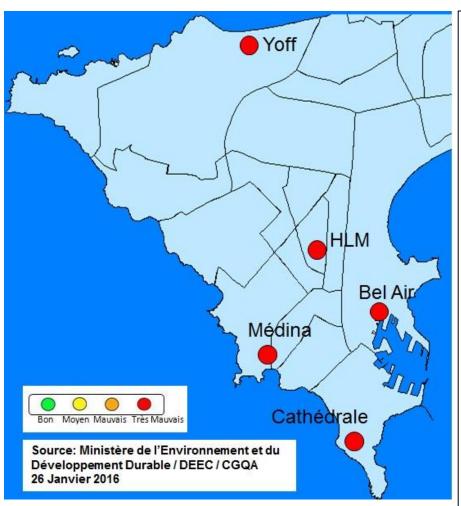
Other reports

and the first

Reports on air quality

- Monthly reports
- Quaterly reports
- Annual reports

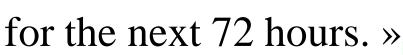
Available for download on the following website:


www.air-dakar.org

Air pollution episode on 26 – 31 January 2016

High PM concentrations

- PM10 maximum values exceeded 700 micrograms per cubic meter in most of the measurement stations
- Red AQI which means very unhealthy air quality
- Everyone may experience health effects of air pollution


Air pollution episode started on january 26th 2016

Alert message was sent to the press and hospitals (pneumology services)

« The air quality for today is very unhealthy (Red Index).

Deserts particulates concentrations started increasing yersterday. This situation could last

Health warnings issued from ministry in charge of health and doctors

« The exposure of populations to these high particulates concentrations (PM10) presents a real danger, especially for people suffering from asthma and respiratory allergies.

Young children, sensitive people and elderly persons should avoid long exposure to ambient air »

Health warnings issued from ministry in charge of health and doctors

- « respect scrupulously any ongoing medical treatement
- ask a doctor if any suspucious symptom appears (cough, difficulty on breathing, eye or throat irritation)
- avoid intensive physical activity or sport (especially competition) increasing volume of air inhaled »

Health warnings issued from ministry in charge of health and doctors

« - Be careful not to aggravate the effect of this pollution with other respiratory tract irritating factors such as use of solvents, burning incense, and especially tobacco smoke. »

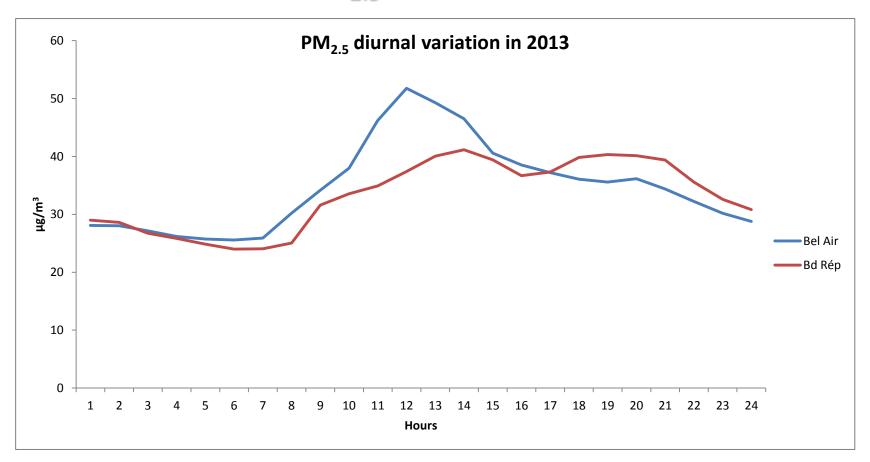
Air pollution episode on 26 January to 31 March 2016

The whole city (and even the country) has been covered by dust that caused a problem of visibility

Where the pollution comes from?

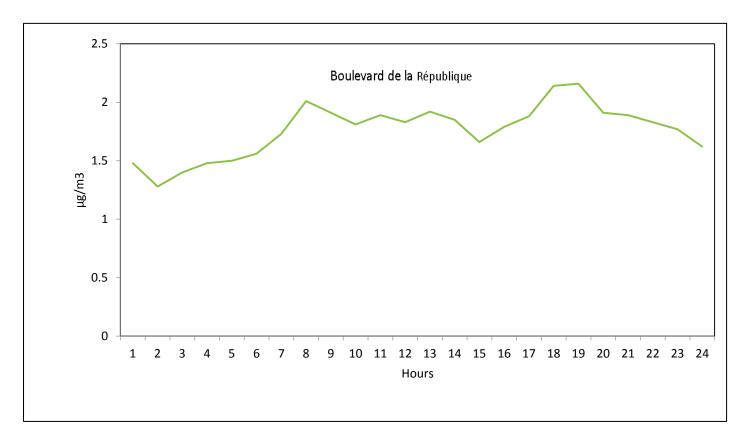
✓ Saharan dust is also correlated with episode of high PM concentrations

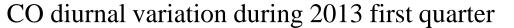
✓ Traffic congestion during these episodes become obviously another aggravating factor



Impact of traffic

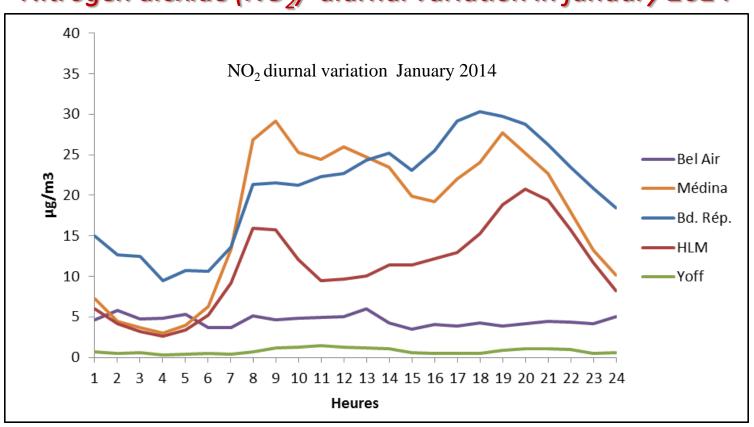
Diurnal PM_{2.5} evolution in 2013




Impact of traffic

Diurnal variation of carbon monoxide

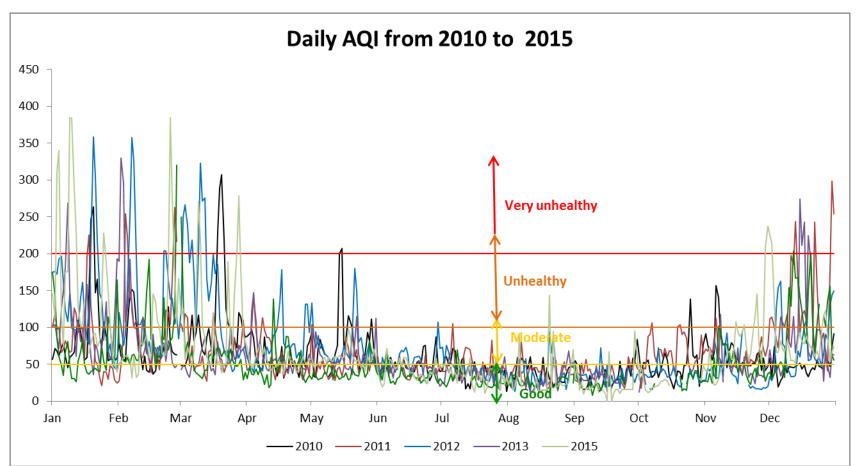
- ✓ traffic station located on the road side
- ✓ Maximum values observed during hours of traffic congestion



Impact of traffic

Nitrogen dioxide (NO₂) diurnal variation in january 2014

Peaks concentrations during hours of traffic congestion hours



Evolution of the AQI from 2010 to 2015

The trend shows 2 different seasons. A dry season with unhealthy to very unhealthy AQI and a rainny season with good AQI.

Composition of the time series

Estimation of the ARIMA model

VALIDATION of the model

ARIMA is written: ARIMA (p, d, q)

- *p=level of auto-regression
- *d= the order of integration
- *q= moving average calculation

Test Box Ljung (bruit blanc)

2ème Model: Simple Linear regression

We can explained the variance of a dependante variable by an independant variable with an algebric equation: $Y_i = (B_0 + B_1 X_1)$

Dry saison

Model	Non Standardised coefficients	Signification
	А	
Constant	3,464	0,00
PM10	0,395	0,00

AQI (Dry saison) = 3,464 + 0,395 (PM10)

$$Y = B_0 + B_1 (X_1)$$

Ex: Estimated the Air Quality Index by PM10

IQA=3,464+0,395*(**PM10**)

AQI (Rainny saison) = 11,084 + 0,339 (PM10)

$$Y = B_0 + B_1 (X_1)$$

Ex: Estimated the Air Quality Index by

PM10 IQA=11,084+0,339* (**PM10**)

Conclusion

For a better air quality assessment and abatment strategies

- -The standards must be for all majeur pollutants coming from exhaust gaz. Standards are for the CO, the smoke opacity and the hydrocrbure.
- -Integrated the statistic model after testing it.
- -Assessment of emissions from motorized vehicles and industrial facilities (ongoing).
- -Linkage between epidemiological data (rate of hospital admissions, and the mortality from air pollution.

Thank you for your attention

