Cost breakup of new emerging decentralised wastewater treatment technologies

<table>
<thead>
<tr>
<th>Name</th>
<th>Treatment Method</th>
<th>Treatment capacity</th>
<th>Reuse of treated water</th>
<th>Capital cost (₹/KLD)</th>
<th>O&M cost (₹/KLD/year)</th>
<th>Features</th>
</tr>
</thead>
</table>
| Green bridge | Filtration, sedimentation, biodigestion and biosorption by microbes and plants | 50 – 200 KLD/sq m | In situ treatment of water bodies | 200-500 | 20-50 | • Suitable for in-situ treatment in rivers, flowing streams
 • No skilled labour is required for its operation and maintenance
 • It improves the overall aesthetics, aquatic life of the water body
 • Pollution load reduction is up to 80 per cent in general
 • Increase in dissolved oxygen (DO) from 150-200 per cent |
| Biosanitiser/ Eco chip| Bio catalyst- breaking the toxic/ organic contents | 100 mg/ KLD | In situ treatment of water bodies | Chip costs 10,000 excluding civil / construction cost | NA | — |
| Nualgi | Phycoremediation (use of micro/ macro algae- fix CO₂ , remove nutrients and increase DO in water) | 1Kg treats upto 4ML | In situ treatment of lakes/ ponds, increase in fish yield. | ₹350 / MLD | 9000 -10,000/ML | • The growth of diatoms is very fast-starting within 5 minutes and continues as long as the nutrients last, about 1 week to 10 days
 • 1 kg of Nualgi results in the release of approximately 100gps of oxygen
 • 100kg of Nualgi can treat 4 million litres of water |
| Bioremediation | Decomposition of organic matter using biological products | 1 billion CFU/ml | In situ treatment of lakes/ ponds | Rs. 20,000-30,000/ML for flowing water and Rs. 4000-5000/ML for still water | 1.9 lakhs/ MLD for flowing water and Rs. 2.8 L/Acre for still water (for eg. Lakes) | • Pollution load reduction is up to 80 per cent in general
 • Increase in dissolved oxygen (DO) from 150-200 per cent
 • It is cost effective. No construction or additional infrastructure is required
 • Effective in removing highly toxic and health hazardous gas H₂S from the environment completely
 • These strains exhibit growth even at low temperature as low as 4 degree celsius and in the optimum pH range of 6-9
 • The strain of bacteria maintains a satisfactory level of DO and therefore aerators, which consume high power, can be avoided or its use can be reduced
 • Controls the nutrient level in water thus helps in controlling “Eutrophication” process |
| Soil Bio technology | Sedimentation, filtration, biochemical process | 5KLD – tens of MLD | Horticulture Cooling systems | 10,000-15,000 | 1000-1500 | • The process can be run on batch or continuous mode
 • No sludge production
 • Mechanical aeration is not required
 • The hydraulic retention time range from 30 mins to 1 hour without any pre-treatment
 • The overall time of operation is 6-7 hours. The bed is dried prior to next cycle of use. |
| Soil scape filter | Filtration through biologically activated medium | 1-250 KLD | Horticulture | 20000-30000 | 1800 - 2000 | COD reduction in the range of 70-98%
 Area requirement is 1 sq m |
| DEVATS | Sedimentation, anaerobic treatment, plant rootzone treatment, oxidation process | Should be more than 1 KLD, but plants bigger than 1 MLD are also not feasible as would need extensive land. | Horticulture, mopping floors, cooling towers and flushing | 35,000-70,000 | 1,000-2,000 | • Consist of several modules like settler, anaerobic baffle reactor, planted filter bed and a pond.
 • There’s no need to have all the modules at each site, selection of modules depend on the quality of the water required after treatment
 • Settler helps in trapping the settleable solids whereas ABR helps in reducing BOD by 80-90%, while PFB helps in trapping the nutrients. Pond takes care of the odour
 • Minimal running cost, as no electro-mechanical equipment used |
| Ecosanitation Zero discharge toilets | Separation of faecal matter and urine | Flushing Horticulture Composting | 30000 – 35000 (includes civil work) | 35000 – 40000 (includes salary of the caretaker) | — | • Easy to install with no sewerage system requirement
 • No electrical power supply or motor driven devices required
 • Hygienic conditions are maintained at the same level as in conventional water borne systems.
 • Can easily be operated and maintained by the community. |

Contd...
<table>
<thead>
<tr>
<th>Name</th>
<th>Treatment Method</th>
<th>Treatment capacity</th>
<th>Reuse of treated water</th>
<th>Capital cost (₹/KLD)</th>
<th>O&M cost (₹/KLD/year)</th>
<th>Features</th>
</tr>
</thead>
</table>
| Fixed Film Biofilter Technology (FFBT) | Settling and flow equalisation followed by enhanced natural degradation (biochemical process) | 0.5 KLD to tens of MLD | Horticulture, Car Washing | 25,000-35,000 | 1000-2000 | • Biofilter used may be stones, gravels, sand or PVC filter material whichever provides maximum surface area and is easily available.
• Enhanced degradation of contaminants takes place in minimum area, since suitable micro-culture is added to the Biofilter cell. |
| Phytorid | Settling followed by plant root zone treatment in specially engineered baffled treatment cells which provides both aerobic and anaerobic treatment | 5 KLD – tens of MLD | Horticulture | 14,000-35,000 | 1,000-2,000 | • Use of chosen wetland plants that are locally available
• Retention time is between 5-7 days
• BOD and TSS removal average between 70-90% while faecal coliform is about 85-97% in treatment cells
• Average nitrogen and phosphorus removal are in the range of 69-90% |