FACTSHEET

Proposed norms for coal-based power plants

Current status

Of the total pollution from the industrial sector, the coal-based power sector currently accounts for approximately 60 per cent of particulate matter (PM) emissions, 45-50 per cent of SO_2 emissions, 30 per cent of NOx emissions and more than 80 per cent of mercury emissions. However, there are currently no standards to curb emissions of SO_2 , NOx and Mercury. The only standards that exist are for PM, which are between 50-150 mg/Nm³, quite relaxed compared to the global norms of 30 mg/Nm³. The proposed standards released by the MoEF&CC today bridges this gap.

Proposed norms – Air Pollution

Pollutant	Existing	Units installed before	Units installed after	Units installed
		2003	2003	after Jan. 1, 2017
PM (mg/Nm ³)	50- 150 mg/Nm ³	100	50	30
SO ₂ (mg/Nm ³)	None	600 (<500 MW size)	200 (> 500 MW size)	100
		200 (>500 MW size)		
NO _x (mg/Nm ³)	None	600	300	100
Mercury (mg/Nm ³)	None	0.03 (>500 MW size)	0.03 (>500 MW size)	0.03 (all units)

Impact of proposed norms in reducing air pollution

Annual emissions (tonnes/annum)	Existing state of the art 1000MW plant		New Plant
	Current	By 2017	January 2017 onwards
PM	1,552	1,552	1,186
SO ₂	41,304	7,814	3,907
NOx	14,077	11,862	3,954
Hg	3.6	0.86	0.86

- 1. **PM Norms:** Current norms are 150 mg/Nm³ for old plants while for plants commissioned after 2008, Environment clearances typically specify 50 mg/Nm³.
 - a. The new norms therefore imply around 33% cut for oldest plants; in fact, required cuts would be even higher since, CSE's recent study showed, almost two thirds of the units don't meet the existing norms.
 - b. Some of the good Indian units are meeting the 50 mg/ Nm³ norms. However, many of the units that were established after 2003 don't meet the 50mg/ Nm³ norm. These will need to upgrade their ESPs to meet the norms.
 - c. New units after 2017 would need to meet 30mg/ Nm³, same as China's. With advanced technology, global best units are able to achieve 5 mg/ Nm³ so this is an achievable and a desirable target. The norms for these new plants would require PM emissions to be 25% lower than the existing high-performing Indian plants.

- SO₂ norms: No national norms; however, certain states like Gujarat and Maharashtra have established norms. Also, certain coastal imported coal-based units were required to install SO₂ control technology and were given SO₂ norms of 50 mg/ Nm³.
 - a. The new norm will require the smaller units to optimize raw material/fuel mix and operation to achieve the norm of 600mg/ Nm³.
 - b. The older plants with unit sizes of 500MW and above have sufficient space for Flue gas desulphurization (FGD) installation for SO₂ control. Accordingly, norms of 200 mg/ Nm³ are appropriate. These norms would imply cuts in SO₂ emissions of 80% for the good plants and even higher cuts for average performers
 - c. The plants commissioned 2017 onwards must have FGD in order to reduce the SO₂ emission to 100mg/ Nm³, which is equal to the Chinese norm. A global-best plant can achieve SO₂ emission of 20mg/Nm³. This norm would ensure that new plants would have SO₂ emissions that are 90% lower than emissions of the state-of-the-art domestic coal-based plants in India.
- 3. **NOx norms:** There are no national NOx norms either. Old units are no NOx control technologies; new and large size units have installed low NOx burners to control NOx emission.
 - a. Older and smaller units have limited ability to cut NOx emissions.
 - b. Large size plants (500MW unit capacity) which are already equipped with low NOx burner can optimize boiler operation further to achieve emission below 300mg/ Nm³ (equal to Chinese norm). For these units over 15% cuts in NOx emissions would be achievable
 - c. New plants commissioned after 2017 would need to meet NOx norms of 100 mg/ Nm³ (global best plants can achieve 50 mg/ Nm³). This norm would imply NOx emissions from new plants would be around 70% lower than current best plants
- 4. Mercury: No mercury norms in place currently
 - a. With technological modification in pollution control and coal washing, mercury emission reduction to 0.03 mg/ Nm³ (same as China's) is achievable. USA has even stricter norm of 0.0017mg/ Nm³. New norms would help cut mercury emissions by over 75%.

Proposed norms - Water use

Currently, norms don't specify water use; however, environment clearances and consent to operate establish water use.

	OTC plants	Existing CT plants	Upcoming plants (after January, 2017)
Water consumption (m ³ /MWh)	Convert to CT-based plants; max. allowed consumption of 4 m ³ /MWh	3.5 m³/MWh	2.5 m³/MWh

- a. Coal-based power plants withdrew over 22 billion cubic metre of fresh water in 2012 oncethrough-cooling (OTC) systems based plants, which are particularly wasteful water users withdrew around 90% of this number while generating less than 20% of power.
- b. Under new norms, OTC plants would need to convert to cooling tower-based ones and cut water draw to 4 m³/MWh from current average draw of around 150 m³/MWh.
- c. Existing CT-based plants consume 4m³/MWh these will need to cut water use to 3.5 m³/MWh.

d. New plants would need to cut water use to 2.5m³/MWh, which is equal to the average water use of Chinese plants. Plants can be a zero liquid discharge and easily reduce the water consumption below the standards. A global best cooling tower based plant has water consumption as low at 1.6m³/MWh.

The change in water use norms would cumulatively reduce fresh water withdrawal by 80% to less than 5m³/MWh (including water use of new capacity) by 2017 from over 22 billion cubic metre in 2012.