Impact of Improving Public Transport and NMT Facilities on CO$_2$ Emissions in Indian Cities

Deepty Jain
Geetam Tiwari
TRIPP/CED, Indian Institute of Technology Delhi
Problem statement

- Degrading bus service and increasing risk to pedestrians and cyclist
- Declining use of NMT and public transport system
- Increasing use of personal motorized vehicles
- Increasing emission levels

BACKGROUND

NEED TO RESTRAIN INCREASING EMISSION LEVELS

RETAINING EXISTING MODAL SHARES IS REQUIRED

- Improve Public Transport System
- Infrastructure for safe and secure use of NMT
NMT is the dominant mode of transport in all cities.

Existing use of the public transport in Indian cities is high.

In the cities where formal bus service does not exist, motorized two wheeler and informal para-transit service dominates the motorized transport modal share.

Note: Modal share in Indian cities. Data collected from various sources.
Equivalent CO$_2$ emissions

- cars and MTW contribute 65 - 80 percent of the total transport emissions.
- Delhi has highest emission levels because of more motorized vehicles travelling longer distances
CO₂ equivalent emissions per passenger-km from vehicles and transport modes in developing countries

<table>
<thead>
<tr>
<th>Type of vehicle</th>
<th>Load factor</th>
<th>CO₂ equivalent emissions (full energy cycle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car (gasoline)</td>
<td>2.5</td>
<td>130 – 170</td>
</tr>
<tr>
<td>Car (diesel)</td>
<td>2.5</td>
<td>85 – 120</td>
</tr>
<tr>
<td>Car (natural gas)</td>
<td>2.5</td>
<td>100 – 135</td>
</tr>
<tr>
<td>Car (electric)</td>
<td>2</td>
<td>30 – 100</td>
</tr>
<tr>
<td>Scooter (two-stroke)</td>
<td>1.5</td>
<td>60 – 90</td>
</tr>
<tr>
<td>Scooter (four-stroke)</td>
<td>1.5</td>
<td>40 – 60</td>
</tr>
<tr>
<td>Minibus (gasoline)</td>
<td>12</td>
<td>50 – 70</td>
</tr>
<tr>
<td>Minibus (diesel)</td>
<td>12</td>
<td>40 – 60</td>
</tr>
<tr>
<td>Bus (diesel)</td>
<td>40</td>
<td>20 – 30</td>
</tr>
<tr>
<td>Bus (natural gas)</td>
<td>40</td>
<td>25 – 35</td>
</tr>
<tr>
<td>Bus (hydrogen fuel cell)</td>
<td>40</td>
<td>3 – 6</td>
</tr>
<tr>
<td>Rail transit</td>
<td>75% full</td>
<td>20 – 50</td>
</tr>
</tbody>
</table>

- Bus is the least CO₂ emitting mode of transport
- Emissions from rail transit is low if the electricity supply is not by coal and in India approximately 53.3% of the electricity demand is sufficed by coal.
- **Source:** *Sperling, 2004*
Trip length frequency distribution

<table>
<thead>
<tr>
<th>Cities</th>
<th>Trips shorter than 5 km</th>
<th>Trips shorter than 10 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delhi</td>
<td>40%</td>
<td>70%</td>
</tr>
<tr>
<td>Hyderabad</td>
<td>65%</td>
<td>88%</td>
</tr>
<tr>
<td>Pune</td>
<td>77%</td>
<td>95%</td>
</tr>
<tr>
<td>Patna</td>
<td>45%</td>
<td>90%</td>
</tr>
</tbody>
</table>
Scenario development

- Three scenarios
 - Improving only bus infrastructure
 - Improving both bus and NMT infrastructure
 - Improving only NMT infrastructure

- For each scenario
 - Maximum Shift Scenario and
 - Minimum Shift Scenario
Maximum shift scenario

1. **Improving only bus infrastructure**
 - Longer trips shift to the use of bus
 - Existing use of bus for shorter trips continues

2. **Improving both bus and Non-motorized transport infrastructure**
 - Longer trips shift to the use of bus
 - Shorter trips shift to walking and cycling

3. **Improving only NMT infrastructure**
 - Shorter trips shift to the use of

Share of trips longer than 5 km shifting to bus

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Share of trips longer than 5 km shifting to bus</th>
<th>Share of trips shorter than 5 km shifting to NMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>50% of the long trips made by MTW and IPT</td>
<td>0%</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>50% of the long trips made by MTW and IPT</td>
<td>30% of the short trips made by bus, MTW and IPT</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>0%</td>
<td>30% of the short trips made by motorized transport</td>
</tr>
</tbody>
</table>

Note: Modal shift does not occur from four-wheelers
Minimum shift scenario

1. **Improving only bus infrastructure**
 - Longer trips shift to the use of bus
 - Existing use of bus for shorter trips continues

2. **Improving both bus and Non-motorized transport infrastructure**
 - Longer trips shift to the use of bus
 - Shorter trips shift to walking and cycling

3. **Improving only NMT infrastructure**
 - Shorter trips shift to the use of

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Share of trips longer than 5 km shifting to bus</th>
<th>Share of trips shorter than 5 km shifting to NMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>20% of the long trips made by MTW and 5% of the long trips made by IPT</td>
<td>0%</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>Same as in Scenario 1</td>
<td>10% of the short trips made by bus, MTW and IPT</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>0%</td>
<td>Same as in Scenario 2</td>
</tr>
</tbody>
</table>

Note: Modal shift does not occur from four-wheelers
- Maximum reduction in CO$_2$ is in Patna and least in Delhi.
- As per previous studies,
 - Three mega cities of India – contributes to 50% of the total emissions
- Need to emphasize on megacities to reduce maximum amount of Co2 emissions
- Need to focus on large cities to get maximum benefit
Resulting Emissions and Modal Share as Per Maximum

Maximum decrease in total emissions is in scenario 2 for all the three cities.

The result highlights the need of NMT infrastructure along with improved bus service in the cities to reduce emissions in all the cities.

Maximum impact of the strategy can be realized in Patna followed by Pune and least being in Delhi.
Resulting Emissions and Modal Share as Per Minimum

Maximum decrease in total emissions is in scenario 2 for all the three cities.

The result highlights the need of NMT infrastructure along with improved bus service in the cities to reduce emissions in all the cities.

Maximum impact of the strategy can be realized in Patna followed by Pune and least being in Delhi.
CONCLUSION

• Scenario 2 i.e. NMT infrastructure along with bus infrastructure is required to reduce emissions from mega and large cities

• 15% of the total urban population lives in 3 megacities of India contributing to 50% of the total emission from urban transport

• Measures are required to be done Delhi reducing quantitative total emissions

• Though emissions from Patna are low, however, scenario results in reducing 20% of the total emissions thereby having maximum impact of strategies
THANK YOU