

About Yamuna. But not just Yamuna

- Every river, every lake, every water body getting polluted. Full of our sewage.
- We take water, return sewage.
- 80% of water leaves as sewage
- Cities are growing, need more water, discharge more pollution.
- Dirty water means ill health: biggest cause of children's death.

Be angry. Not acceptable.

Water wars within

Pollution will add to water stress. Cannot allow it. Have to build cities without pollution.

Water 'wars' happening between old users and new users...

- Not full blown wars skirmishes;
- Tonk district: farmers fight against water allocation to Jaipur and Ajmer;
- Veeranam lake: farmers fight against water allocation to Chennai;
- Vishakapatnam: farmers fight Jindal project for its water allocation. Say their water is already going to city;
- Bharatpur: farmers stop biomass project saying it will use their water.....

Can't afford to pollute

- Are river action plans working?
- Cities water need will grow…
- They will take water upstream; discharge waste downstream; take clean water, release dirty water
- Reduce the water availability; increase stress; increase in incidence of disease
- Understand Yamuna to understand India's water future

22 Km
stretch in
Delhi
contributes
70 per cent
of the total
pollution
load of the
river

Yamuna a dirty drain of Delhi (BOD levels)

DO levels: Yamuna is dead.

--- Yamuna at Nizamuddin

Yamuna at Palla

★ Yamuna at Okhla after meeeting Shahdara drain

Faecal Coliform: our sewage

We all live downstream: what we do to the river; others will do the same

BOD trends in Yamuna from 1996-2005

Funds spent, programmes implemented

By 2006

- 17 sewage treatment plants built;
- 10 common effluent plants built;
- 30 km of trunk sewers repairs (out of 130 km)
- **Slums** removed from riverfront

Low-cost toilets built

Money spent

Money down the drain

Capital investment to clean Yamuna	Rs crore	
YAP-I (spent in Delhi)	19.94	
YAP extended (in Delhi)	166.62	
17 STPs with a capacity 2,330 mld ¹	745.6-1,048.5	
15 common effluent treatment plants	256	
Total	1,188.16-1,491.06	

Pollution and investment both rise

Balance sheet

input: funds output: pollution

Not about pollution. It is about sewage

- We discuss pollution because it is modern and somehow touchable.
- We do not discuss human excreta and its disposal.
 That is an untouchable subject.
- Flush and forget mindset
- Drains will carry it. Somebody will treat it. Somebody will build sewage treatment plant. Clean it. Dispose it.
- Don't care. Yamuna is polluted not because of us

But it is about us: our water; our sewage

Understand the political economy of defecation

Urban drinking water and sanitation challenge

- Cities are sourcing their water from further and further away – costs them money to pump; high losses in water transportation (roughly 20-50%)
- Cities are worried about water not about their waste
- Waste not treated goes into water of others cities have to invest in cleaning water (Agra – chlorine).
 Can't clean then they look for new source
- Costs of water supply means cities can subsidise some and not all. Subsidise the rich

Current system: bring water (from distance); treat, pump, pipe to home, take sewage, pump, pipe, treat and dispose...river will be clean

- Should work. But:
- a. It is capital intensive creates divide between the rich and poor in a city. The state can subsidise some but not all. Subsidises rich
- b. It is resource intensive uses water, creates waste. Adds to stress.

Cities in search for water

Chennai: 235 km

(Veeranam lake) and now planning to go farther 300 Km (Veeranam extension project).

Bangalore: 95 km (Cauvery) pumping 1000 m elevation.

Delhi: 450 to 500 km (from Tehri dam)

Inefficiencies are high

- Huge distribution losses in water supply between 20-50 per cent.
- Losses add to costs, which recovery is difficult;
- Because cost is high cannot recover from consumer;
- Cannot invest in efficiencies and clean water for all.

Transportation costs are high. Distribution costs high. Cannot be recovered. Subsidy to some. Water inequity in Delhi.

Add: waste to these sums

- The more water we use = the more waste we generate.
- The more waste we generate = more money to collect, to convey, to treat and to dispose
- The more waste we do not treat = polluted water and increased burden of health costs.
- Simple sums: but we can't add up

If STP was the answer, pollution in Yamuna not a problem

- India has installed capacity to treat roughly 20% of excreta it generates
- Delhi has 40% of India's installed capacity
- 17 STPs: can treat 2330 mld of waste
- Delhi generates 2,500 mld (DJB) or 3,700 mld (CPCB)
- Can treat: 93% or 62%
- But...

Underutilised: where there is waste; no STP; where there is STP; no waste

Drainage exists; but does not work. Drainage does not exist; does not work

- Cannot transport waste to the sewage plant.
 Sewage plant cannot treat.
- 5,600 km of drains in city; 130 km of trunk sewers; in poor state.

Then:

- Large parts of the city does not have officialunderground drainage system
- Large parts of the city lives in unauthorisedillegal colonies

Unequal cities are polluted cities

- Half (or more) of the city is unconnected to the official underground drainage system;
- But "Illegal or unauthorised or unconnected" these will have excreta
- This excreta flows into open (storm water) drains
- These same drains also carry treated effluents from sewage treatment plants to the river
- This 'legal' treated effluent is mixed with 'illegal' untreated effluent
- Result: pollution

Take
East Delhi
Shahadra drain

Discharges 16% flow or 20% of BOD load into Yamuna

2 STPs

Yamuna Vihar: 45+45

mld treated.

Kondli: 45+45+113

mld treated

But

- Treated effluents from Yamuna Vihar discharged into drain
- Drain carries effluents of un-sewered colonies
- Treated and untreated effluent then picked up at Kondli
- Treated again
- Discharged into drain which carries effluents of unsewered colonies – in Delhi and Noida.
- Are we surprised: River stays polluted

Sewage treatment plants located far away from sources. Treated water mixed in same drain. Not reused.

Can we pay full cost? Can we design system for all?

- It costs Rs 5-6 per 1000 litres to supply treated water to us
- We pay Rs 2.20 per 1000 litres
- Cost will increase if pollution increases.
 Upstream cities will do the same as Delhi
- Will cost Rs 30-40 per 1000 litres to take back our sewage; treat it; dispose it. (Hardly pay)
- Cost will increase as river gets more polluted.
 No assimilative capacity.

Indian rivers: same tales

TABLE 1.1: Spending on river clean up

River action plan		Outlay (Rs crore)	Expenditure (Rs crore)	
1	Ganga Action Plan-I	462	433	
2	Ganga Action Plan -II	2,386	919	
2.1	Yamuna+extended+phase II	1,356	677	
2.2	Gomti	324	40	
2.3	Damodar	23	1	
2.4	GAP-II (West Bengal)	396	156	
2.5	Towns directed by Supreme Court	221	43	
2.6	CETP-Kolkata tannery project	65	0	
3	National River Conservation Plan	2,318	958	
	Total (1+2+3)	5,166	2,310	

Source: Anon 2005, MIS report of programmes under National River Conservation Plan-Vol-II, MoEF, New Delhi, November, *mimeo*

Planned; not built: less than 40 per cent of sewage treatment capacity built

TABLE 1.2A: Sewage treatment capacities created under river action plans – 2005

Action plan	Sanctioned cost (Rs crore)	STP capacity planned (mld)	STP capacity created (mld)
National River Conservation Plan	625.99	3,153	645
Ganga Action Plan phase-II	457.64	2,211	808
Yamuna Action Plan	218.32	927	741
Gomti Action Plan	123.81	436	42
Damodar Action Plan	1.66	67	0
Ganga Action Plan-II (main +Supreme Court towns)	113.85	780	25
Ganga Action Plan phase-I	340.54	882	865
Total	1,424.17	6,247	2,318

Sources: Anon 2005, 'MIS report of programmes under National River Conservation Plan-Vol II', MoEF, New Delhi, November, mimeo

40% capacity created exists in Delhi alone

TABLE 1.3: The big STP states

State		No of STPs	Percentage of total in country	
1	West Bengal	39	14.5	
2	Uttar Pradesh	35	13	
3	Delhi	30	11	
4	Maharashtra	24	8.9	
5	Karnataka	19	7.1	
6	Andhra Pradesh	18	6.7	
7	Haryana	17	6.3	
8	Madhya Pradesh	15	5.6	
9	Tamil Nadu	14	5.2	
10	Gujarat	10	3.7	
11	Bihar	8	3	
	Total for 11 states	229	85	
	Total STPs in country	269	100	

Note: In Delhi the 17 STPs have 30 treatment units hence number of STPs is taken as 30.

Source: Anon 2006, *Status of Sewage Treatment in India*, CPCB, MoEF, February, New Delhi

Maths of national excreta

- 2006 CPCB estimated sewage from class I and II cities =
- Total sewage = 33,200 mld
- Capacity to treat: 6,109 mld (18% of sewage)
- Sewage actually treated: 4,400 mld (72% of capacity created)
- Gap: 28,800 mld of sewage
- = 13.5% of sewage generated actually treated

Not simple 'infrastructure' issue: learn from Yamuna: will cost; cannot pay; cannot provide for all; will pollute

TABLE 1.4: Costs of capital and operations in different Delhi STPs

Heads	Conventional	Advanced technology		Decentralised micro STPs	
	Rithala Phase-I (ASP)	Rithala Phase-II High-load aeration and biofiltration	Sen Nursing Home Densadeg		
				SAFF	FAB
Total capital cost (Rs lakh per mld)	27.75	49.19	61.18	63.50	45.00
Capital cost in Rs per person	299.70	531.25	660.74	685.80	486.00
O & M costs in Rs per kilolitre at the treatment plant	0.60	0.40	3.00	2.50	1.82
Observed BOD values (in mg/l)	12.00	6.00	4.00	less than 10	less than 10
Observed TSS values (in mg/l)	25.00	7.30	10.00	less than 20	less than 20

Source: Data compiled from Delhi Jal Board and Municipal Corporation of Delhi

Water-waste connections: more water; more cost of treatment

TABLE 1.5: Water-waste economics

Water use (litres per capita)	Waste generated (litres per capita) ¹	No of persons whose waste could be treated at 1 mld plant	Cost of sewage treatment per capita @ Rs 28 lakh per mld (Rs)
40	36	27,777	100
200	160	6,250	448

Cost of system is high. Cannot pay. Cannot subsidise all. Only rich.

- This is the political economy of defecation.
- The rich use water. Are connected to sewage system.
 Waste is collected. Even treated.
- But they cannot pay for full costs...
- The poor use little water. Not connected to sewage system. Waste flows in open drains. Not treated.
- But if system not designed for all. Not affordable by all. Will not work.

The ultimate irony

- If we don't clean river; pollution increases;
- If we don't treat waste; groundwater gets contaminated;
- Rich (you and me) move to bottled water
- Pay Rs 12 per litre
- Poor have no option. Pay with health costs.
- Unacceptable. Wrong. Will not work

What do we do?

Think: of Yamuna in Delhi, not of Hudson in New York, not of Thames in London

Think: of software not hardware

All the STPs, all the interceptor drains...will not work.

If we do not understand and rework the way we manage the business of water-sewage

- 1. Treat all sewage
- A. Intercept sewage from open drains (not just 'legal' sewage)
- B. Use open drains as treatment areas plan for drains, not just wish them away
- C. Maximise the current sewage treatment plants do not only build new

- 2. Treat but do not discharge into drain
- Once sewage is treated; reuse-recycle so that not added to the untreated sewage in drain

Or

- Once sewage is treated; put into river for dilution – treat close to the river as possible
- Promote reuse so treat close to the source as possible. Build where there is waste. Where you build plan for disposal or reuse

Intercept in drain; take to treatment plant; treat; reuse and not mix in same drain. If no option for reuse; treat and dispose directly in the river. Meet standards needed for assimilative capacity of river

3. Plan sewage-sanitation for all

 It is unacceptable that half of Delhi does not have access to sanitation or sewage

Invest

- But think differently. Find leapfrog solutions to new sewage answers
- Re-invent the flush toilet so that it is affordable for all
- And does not cost us the Earth

4. Rework water; rework economics

- River needs water to assimilate our waste
- Reduce water use to reduce waste discharge
- Recycle and reuse waste as water

Learn economics of water-sewage-excreta Learn the economics that matter

Think great. Not big

- Have to rework paradigm of water and waste
- Have to rethink waste so that we generate less; can treat cheaply; can reuse
- No options
- Remember: We all live downstream