

Bangalore's Lake System: Blueprint for a circular water economy?

Nature Based Solutions

Centre for Science and Environment

Nov 28, 2018

Veena Srinivasan

Two water futures

A linear system

Bring water from further and further away

Dispose the wastewater far away.

"High infrastructure" scenario:

- Large inter-basin megaprojects
- Centralized wastewater treatment.
- 3. Separation of sewage and wastewater in storm water drains.
- 4. Transfer of wastewater to parched rural districts

The question is: What are the ecological and financial implications?

Two water futures

A circular system

Treat the wastewater fully

The question is: Is the feasible? Desirable? If so, what will it take to get there?

"Integrated urban water management" scenario:

- Limit dependence on external sources
- Neighborhood-scale wastewater treatment.
- 3. Separation of sewage and wastewater in storm water drains.
- 4. Storage of tertiary treated water in lakes for blending with Cauvery piped supply

AN INTEGRATED FRAMEWORK

WATER SUPPLY AND USE

Bangalore's water situation

Water pumped 300 m, rest is unsustainable GW

Source: 2011 Housing Census Data Analysed by Lele and Kuttawa

Bangalore's water situation

Water pumped 300 m, rest is unsustainable GW

Source: 2011 Housing Census Data Analysed by Lele and Kuttawa

CII Water Use

- Billed BWSSB piped water use
 = 109 MLD
- Estimated groundwater use = 273 MLD
- Estimated total freshwater use= 381 MLD
- Treated water use ~ 15 MLD
- Construction water ~ 40 MLD
- Public park water ~ 10 MLD
- Total Gross use ~ 396 MLD

Price response > GW use

WASTEWATER TREATMENT

Problems with the current system: Sewage in storm water drains

Problems with the current system: Sewage in storm water drains

Data Source: Jamwal, 2017

Even where there are STPs, they are not actually getting sewage

VV RIVER carrying sewage & industrial effluents (~600MLD)

LAKES AS INTERMEDIARIES

Most were originally irrigation tanks built centuries ago,

Ulsoor Lake, 1882

Source: Dhan Foundation

The tanks were built on stream channels to form a cascading chain

Source: Shah, 2003

As tanks became "lakes" the management mandate changed from storage to balancing multiple uses

Problems with the current system: Encroachment and Development

Kanteerva Stadium

Majestic Bus Terminus

Problems with the current system: Sewage in storm water drains

Bangalore "rivers" are really open drains.

One solution is to divert

Throwing the (rainwater) out with the bath (sewage) water.

Problems with diversion: Saul kere – mostly dry lake

Sewage AND Storm water completely diverted

The second solution is a lake side sewage treatment plant (STP)

Problems with the current system: Jakkur – full throughout the year

Receives 10 MLD of treated sewage each day

Problems with the current system: Jakkur – full throughout the year

Source: Jamwal, 2017

Even Jakkur suffers from hyper-eutrophic conditions

Problems with the current system: Jakkur – full throughout the year

Source: Jamwal, 2017

This causes huge fluctuations in Dissolved Oxygen levels

CURRENT WATER BALANCE

Sources and Uses of Water (MLD)

A Linear Water Economy

*CII = Commercial, Industrial, Institutional ET = Evapotranspiration

A Loopy Water Economy

Is a Circular Water Economy possible?

How do we get there?

1. Laws (Legal Clarity)

2. Agencies (Fragmented Agencies)

3. Citizens

3. Empowering Citizens

Problem: Deteriorating lake water quality

Information Gap: Nutrient balance of lakes

Solution: Citizens empowered to act

Sensing, Analytics: Measuring N, P, DO

Thank you!

Faculty: Priyanka Jamwal, Sharad Lele

Researchers: Apoorva R. Sayan Roy Mrinalini Bakshi Praveen Raje Urs Chandan Gowda Funders: Royal Norwegian Embassy IDRC Canada Oracle CSR