Livestock's contribution to antimicrobial resistance in low- and middle-income countries

Timothy Robinson

Workshop on National Action Plans on Antimicrobial Resistance for Developing Countries: Focusing on Resistance Emanating from Antibiotic Use in Food Animals

New Delhi, India, 10–11 November 2016

Acknowledgments

- Marius Gilbert
- Thomas Van Boeckel
- Mark Woolhouse
- Delia Grace
- Ramanan Laxminarayan
- Dengpan Bu
- Manish Kakkar
- Jatesada Jiwakanon
- Pham Thi Ngoc
- Samuel Kariuki
- Juan Carrique-Mas
- Ulf Magnusson
- Eric Fèvre
- Juan Lubroth
- Simon Hay

AMR in context

- Unprecedented international concern
 National Action Plans
- Quintessential One Health issue people – animals – environment
- Global phenomenon
- Diverse views on antimicrobial use in livestock production
- Threat to sustainable food production
- Impact on poverty and economic growth

21 SEPTEMBER 2016, UN HEADQUARTERS, NEW YORK

Why livestock in LMICs?

- Rapid sector growth
 pigs chickens dairy
- Large share of antibiotic use
- Important livelihood roles of livestock in LMICs
- Conflict: inappropriate use AND poor access to effective antibiotics
- Weak regulation and implementation
- Neglected research area

Key knowledge gaps

A weak evidence base makes identifying effective actions difficult

- Current and projected consumption of antibiotics in animal agriculture
- Transmission pathways of antibiotic resistance determinants among livestock, people and environments?
- What interventions can be effective in diverse settings?

Antibiotic use in livestock

Global trends in antimicrobial use in food animals

Thomas P. Van Boeckel^{a,1}, Charles Brower^b, Marius Gilbert^{c,d}, Bryan T. Grenfell^{a,e,f}, Simon A. Levin^{a,g,h,1}, Timothy P. Robinsonⁱ, Aude Teillant^{a,e}, and Ramanan Laxminarayan^{b,e,j,1}

^aDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; ^bCenter for Disease Dynamics, Economics & Policy, Washington, DC 20036; ^cUniversite Libre de Bruxelles, B1050 Brussels, Belgium; ^dFonds National de la Recherche Scientifique, B1000 Brussels, Belgium; ^ePrinceton Environmental Institute, Princeton, NJ 08544; ^fFogarty International Center, National Institutes of Health, Bethesda, MD 20892; ^gBeijer Institute of Ecological Economics, 10405 Stockholm, Sweden; ^hResources for the Future, Washington, DC 20036; ⁱInternational Livestock Research Institute, 00100 Nairobi, Kenya; and ^jPublic Health Foundation of India, New Delhi 110070, India

Contributed by Simon A. Levin, February 18, 2015 (sent for review November 21, 2014; reviewed by Delia Grace and Lance B. Price)

- Total consumption in the livestock sector in 2010 estimated at 63,151 tons
- Global antimicrobial consumption will rise by 67% by 2030
- It will nearly double in BRICS (Brazil, Russia, India, China, and South Africa) countries

Source: Van Boeckel et al. (2015)

Antibiotic use in livestock

Global antimicrobial consumption in livestock

(mg per 10km pixel)

Source: Van Boeckel et al. (2015)

Chicken systems

Source: Gilbert et al. (2016)

Predicting future livestock systems

Chicken production in China

2000

log GDP per capita c. \$ 2.9 % extensive c. 83 %

2030

log GDP per capita c. \$ 3.8 % extensive c. 18 %

Improved consumption estimates

- Breakdown by antibiotic group
- Collect national data on use by livestock system: top-down vs bottom-up
- Link use to livestock sector scenarios
 Shared Socioeconomic Pathways (SSPs)
- Model the global impact of interventions

Biology of AMR transmission

Source: Ward et al. (2016)

Staphylococcus aureus CC398

Methicillin resistance history (mecA)

Escherichia coli

Pilot study

Pilot study

Source: Bettridge et al. (2016)

Interventions to mitigate AMR

- Reduce overall consumption in livestock production
- Better target antibiotic use
- Reduce antibiotic residues
- Reduce transmission of AMR genetic determinants
- Understanding incentives and behaviour
- Measuring impact of interventions (use, residues, AMR genes)
- Benefit-cost analysis of interventions

Source: Chantziaras et al. (2014)

Interventions to mitigate AMR

HICs

Policies

(Governments)

Public policies and policy instruments, monitoring, surveillance, targets, prescriptions, labeling requirements

Institutions

(Society)

Private standard setting, consumer demand, drug quality control

Private benefits

(Farmers)

Direct economic incentives, (n.b. market distortions)

Conclusions

- AMR is clearly a One Health issue livestock and environment have a big role to play in finding solutions
- Livestock sector has a potentially massive role to play in AMR mitigation
- Global problem but solutions must be found at national and farm levels
- One size won't fit all HIC solutions won't necessarily be directly appropriate in LMICs