Managing nitrogen for climate change mitigation and adaptation in agriculture

H. Pathak*, Y.P. Abrol and N. Raghuram

Indian Nitrogen Group, NASC Complex, New Delhi *Indian Agricultural Research Institute, New Delhi

Fertilizer N

- German chemist Fritz Haber developed a chemical process in which nitrogen and hydrogen gas are combined to form gaseous ammonia.
- Ammonia can be used directly as fertilizer, but most of it is further processed to urea and ammonium nitrate (NH₄NO₃).
- Coupled with irrigation, N fertilizer revolutionized agriculture by increasing crop yield.

NH₃ molecule

Global Fertilizer Nitrogen Consumption

Nitrogen fertilizer is a major driver of food production in India

Pathak (2011)

Impact of reactive N (Nr) in global heat balance

- Warming effects of Nr:
- •Emission of N₂O
- •Production of O₃
- •Reduction in the biospheric CO₂ sink by tropospheric O₃.

Cooling effects of Nr:

- Increasing biospheric CO₂ sink by atmospheric Nr deposition
- C sequestration due to N fertilization
- Light scattering effects of Nr containing aerosol
- Effect of O₃ in reducing the atmospheric lifetime of CH₄.

Key processes involved

Butterbuck et al. (2011)

Nitrogen in soil-crop-animal-atmosphere continuum

Oenema et al. (2009)

Greenhouse gas emission from Indian agriculture

Source	CH ₄	N ₂ O	CO ₂ eq.
	(Mt)	(Mt)	(Mt)
Rice cultivation	3.33	-	83.25
Agricultural soil	-	0.14	41.72
Crop residue burning	0.23	0.006	7.54
Total	3.56	0.146	132.51

Pathak et al. (2010)

Emission of N₂O-N from different sources in agricultural soils (Total emission 0.14 Mt)

Pathak et al. (2010)

Trends in GHG emission from Indian agricultural soil

Estimate of annual inputs and outputs of N in the rice-wheat systems in the Indo-Gangetic Plain

Pathak, H. et al. (2006) Soil Sci. Soc. Am. J. 70:1612-1622.

N annual budget (2000-01) in Indian and World (in parentheses) agriculture (in million tons) Pathak et al.

Net effect of N_r on European GHG balance

	Fossil fuel & landuse change CO ₂	426 [382 to 469]			
	H biospheric CO ₂ (incl. atmos. fertilisation & O ₃ effect)	-74 [-8662] -19 [-308] 4.4 [2.3 - 6.5]			
Long-lived greenhouse gases	CH ₄ (decreased atmospheric lifetime & H and decreased soil uptake)	24.5 [22-27] -4.6 (-6.72.4) 0.13 [0.03 - 0.24]			
	H №	17.0 [14.8 - 19.1] 17.0 [14.8 - 19.1]			
	Halocarbons	7.5 [4.5 - 10.5]			
	Stratospheric	<- 8 <- 1			
Ozone	Tropospheric	5.0 [2.0 - 8.0] 2.9 [0.3 - 5.5]			
Stratospheric water vapour from CH ₄	⊢-1	3.6 [1.0 to 6.1]			
Surface albedo	Land us e	-38.3 [-76.6 - 0.0]			
	Black carbon on snow	9.9 [0 - 19.8]			
Direct	Sulphates (SO ₂ oxidation & aerosol neutralisation)	-26.5 [-16.5 to -36.5] -5.4 [-9.4 to -1.4]			
Total aerosol Cloud	Nitrate	-11.1 [-18.14.1] -11.1 [-18.14.1]			
albedo effect	?	?			
Linear contrails	H	< 2			
Total Anthropogenic	•	409.7 [336.9 - 557.8] -15.7 [-46.7 - +15.4]			
-80 -60 -40 -20 0 20 100 200 300 400 500 600					
European contribution to global radiative forcing [mW m ⁻²]					

Butterback et al. (2011)

Nitrogen management for climate change adaptation

- N fertilizer enhances crop yield and acts as an insurance of climatic risks.
- Compensating quality of crop with additional N application under elevated CO₂.

Approaches for enhancing the N use efficiency

How to Improve N Use Efficiency and Minimize Leakage of N into Environment?

Leaf colour chart

Urea tablet/ Nitrification inhibitor

Smart Nitrogen Management for N₂O Mitigation

Adaptation of late planted rice with demand-driven N management

Nitrous oxide mitigation with nitrification inhibitor

Nitrification inhibitor	Mitigation (%)
Dicyandiamide (DCD)	13-42
Neem cake	10-21
Neem oil	15-21
Nimin	25-30
Coated Ca-carbide	12-29
Thiosulphate	15-20

Fertilizer N Management tools/tactics – a comparison

ΤοοΙ	Benefit / cost	Limitation
Smart N Timing		
Blanket splits	High	Tendency to overuse
LCC-aided real time mgt	High	None
Soil-test	Medium	Facilities
Remote-sensing (NDVI)	Low	Not perfected & high cost
GIS / GPS	Low	Not perfected
Smart N Supply		
Placement	High	Machines
CRF	Low	High cost and not reliable
Inhibitors	Low	High cost and not reliable
Foliar	Low	Equipment, risk

Implementation of Mitigation Options

- Cost effectiveness
- Enhanced production
- Resource availability of the farmers
- National and international policy environment

Mitigation of GHG by improved N management

- Emission of GHG can be mitigated with improved N management.
- But, in most cases, cost of mitigation is more than the cost of N.
- Incentives and policy support, therefore, are required to popularize these technologies.

Climate Change and Agriculture

Conclusions

N influences climate change.

- Efficient N management can help in adaptation and mitigation while reducing other environmental threats such as eutrophication, acidifi cation, air quality and human health.
- Complex and important effects of Nr on climate change processes needs more attention

Publications from ING Workshops

2005

IGBP-WCRP-SCOPE

Report 3, INSA

For copies, email: raghuram98@hotmail.com

Journal Spl. Issue on N in India

Most recent publications from ING

REACTIVE NITROGEN: GOOD, BAD AND UGLY

V. BALASUBRAMANIAN

International Agricultural Consultant and Trainer

With inputs from N. Raghuram, Y.P. Abrol, M.S. Sachdev, Himanshu Pathak and Bijay-Singh

ING BULLETINS ON **VAL ASSESSMENT OF REACTIVE NITROGEN**

19

Series Editor: V.P. ABROL Associate Editor: SUMITA CHATTERED

GREENHOUSE GAS EMISSION AND MITIGATION IN INDIAN AGRICULTURE - A REVIEW

H. PWITHAK, A. BHATTA, N. JAIN and PK. AGGARWAL

Editor: BUAY SINGH

INDIAN NITROGEN GROUP (INC) BOCIETY FOR CONSEIRVATION OF NATURE SCONE

BOUTH ASIAN NITROGEN CENTRE ISANCI INTERNATIONAL INTROGEN INTRATIVE INT

RAKRI

Published By INDIAN NITROGEN GROUP (ING) SOCIETY FOR CONSERVATION OF NATURE (SCON)

> In Association With SOUTH ASIAN NITROGEN CENTRE (SANC) INTERNATIONAL NITROGEN INITIATIVE (INI)

THANK YOU

Contact address:

ICAR

Dr. H. Pathak, FNAAS, AvH Fellow Indian Agricultural Research Institute Pusa, New Delhi 110 012 Email: him_ensc@iari.res.in

