Design Processes
by
Deependra Prashad (DPAP)
Practicing Architect & Sustainable Design Consultant

Indira Paryavaran Bhawan

Design Brief for Indira Paryavaran Bhawan

Ministry of Environment and Forests (MoEF), an emerging ministry with a vital role for the future

A visitor, a citizen, an NGO, a professional, all would perceive the ministry’s building as an embodiment of MoEF’s vision and its role as an umbrella of the environmental preservation movement

Executing the Design Brief

Bringing different ministry segments together is itself a green imperative

Executing the Design Brief

The building is being designed as the first “Energy-Positive” - Urban - govt. - building
Architectural Concept

Developing the Plan

- Plot Area = 9565 sqm
- Preservation of the local ecology, Tree Cutting approvals for 46, but only 19 cut
- 11 Trees Transplanted
- Excavated Soil reutilized at other construction sites and the Zoo

Wider Front Setback (22m) to protect front tree line
Preserve the integrity of the green street
Emphasis on the North & South, Bringing the Greens in

Priority for the Pedestrian

Plan developed for direct pedestrian axis to East, North and West Entrance without cresscrossing vehicles
Developing the Plan – Ground Floor

The Courtyard also helps in air movement besides being a shaded interaction space.

Ground Floor populated by Common and Public facilities

- Zero tolerance to surface parking
- First Basement Parking with Automated parking. Helps reduce volume of parking / excavation / embodied energy of structure

Developing the Plan – Upper Basement

- Keeping Service Areas, Staircases on low light areas. Efficient Usage of the perimeter to maximize daylit areas and views for the users

Developing the Plan – Lower Basement

- Automated Parking with 19sqm/car instead of 35sqm/car in manual parking

Developing the Plan – First Floor

- Conference Room
Toward an Energy Positive Approach

Provision of Solar Photovoltaics for Net Zero requirement also shades the roof.

Towards an Energy Positive Approach

Photovoltaics stepping towards the south side creating a strong agenda for the future for urban buildings on limited site areas.
This is an initiative to mainstream Solar energy in urban areas as against coal and other non-renewables.

Elevations - North

Superstructure = 19,088 sqm
Basement Area = 11,826 sqm
Total Area = 30,914 sqm
Utilizing lessons from nature & traditional buildings

- Maximum Ground Coverage Used (30%) to keep building height comparable to the surroundings
- Respecting the Eco-logic of the site. Building Punctures & jalis to Aid Cross Ventilation

Showcasing Biodiversity

- Regenerative Architecture keeping the existing balance of nature to connect outdoor greens and the courtyard greens
- Showcase green bio-diversity from Bio-climatic regions of Hot Dry, Composite, Warm Humid, Temperate, Cold Dry & Cold Cloudy
- Developing Winter Southside sunspaces for office workers + Deciduous trees

Showcasing Bio Diversity

Grassland Communities, Conservatory of Fruit yielding species, medicinal herbs, Native Flora

Demarcated Areas representing various forest ecosystems. For e:
- Subtropical mixed evergreen forest ecosystem
 - Top canopy - Toona ciliata, Dalbergia latifolia, Mitragyna parvifolia, Syzygium cumini
 - Middle storey - Trewia nudiflora, Artocarpus lakoocha, Cinnamomum camphora
 - Shrub layer - Dillenia indica, Coffea benghalensis, Murraya paniculata, Bauhinia malabarica
 - Herbs and Grasses - Barleria cristata, Flemingia bracteata, Desmodium triforum
 - Climbers - Vigna capensis, Combretum decandrum, Vitis paniculatum

Showcasing Bio Diversity
Site and Water Mgmt Strategies

- Appropriate Shading from Summer Sun, while allowing in winter sun

Energy Conservation Measures

- **Usage of Materials with Low Embodied energy**
 - Cool Roofs with high SRI tiles - high strength, hard wearing
 - AAC Blocks with flyash for recycling and insulation
 - Flyash based Plaster & Mortar
 - Stone and Ferrocement Jalis
 - Local Stone Flooring
 - Bamboo Jute Composite Doors and frames & flooring
 - High Efficiency Glass, high VLT, low SHGC & low U-value, Optimized by shading
 - Light Shelves for bringing in diffused sunlight
 - Terrazzo Flooring

- **Zero Energy**
Changing Expectations in Thermal Comfort

Basic level of comfort levels which many of us are used to in climate appropriate clothing

Highly controlled temperatures which can reduce to the extremely cold.

Clothing - Heavy Business wear

Executive Decision for the Setpoint temperature for summers set to 26 degC & Winters at 19 degC

Energy Consumption on Site

Annual Energy Production & Consumption (MWh)

Energy Positive Building

- Extra Efficient (imported) Solar photo voltaic (SPV) Proposed (Terrace & Projections) : 800 kW
- Energy produced by above SPV Panels per year : 14,91,000 kWh
- Energy consumption for bldg / year : 14,21,000 kWh
Performance Parameters

<table>
<thead>
<tr>
<th>S.No</th>
<th>Description</th>
<th>Conventional</th>
<th>IPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Air-conditioning Load</td>
<td>150 Sqft/TR</td>
<td>450 Sqft/TR</td>
</tr>
<tr>
<td>2</td>
<td>Lighting Power Density</td>
<td>1.1 W/Sqft</td>
<td>0.5 W/Sqft</td>
</tr>
<tr>
<td>3</td>
<td>Electrical Load</td>
<td>10 W/sqft</td>
<td>4.3 W/sqft</td>
</tr>
</tbody>
</table>

Geothermal Cooling

- Condenser water heat shall be rejected to earth by boring at suitable depth & sending hot water at 100°F (37.8° C) & back at 90°F (32.2° C).
- Enormous water saving since no make up water is required.
- Make up water pumping & treatment cost get eliminated.
- Saves cooling tower fan energy.

Active Chilled Beams

Working Principle
 Supply air flows through nozzles in small air jets which induce room air to flow around the coil & air gets cooled.

Design / Constructional / operational advantages
- Reduces power consumption
- Easy Installation
- No noise as no moving parts
- Easy Air balancing activity
- No filters maintenance
- Save architectural space height

Net Zero Design

IPB reduces energy requirement by 70% overall vis-à-vis conventional!

- N-S Orientation – Limiting WWR – Insulation on wall & roof– Extensive Greenery to reduce heat load
- Maximizing Day lighting to reduce lighting loads
- Extremely Low Lighting Power Density – 5w/sqm
- Planning to Minimize AC loads (Keeping open atrium for cross ventilation, Non conditioned lobbies)
- Efficient HVAC with Screw Chillers, VFD’s, Chilled Beams
- Ground based heat exchange for Condenser Water
- Remote Computing - thin client servers
- Energy efficient appliances (5 star BEE)
- SPV’s for the remaining load
Thank You

Projected Cost

<table>
<thead>
<tr>
<th>Service</th>
<th>Cost (Rs. In Crores)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A A & E S</td>
<td>128.63</td>
</tr>
<tr>
<td>Civil Incl WS SI</td>
<td>67.96</td>
</tr>
<tr>
<td>Electrical</td>
<td>22.08</td>
</tr>
<tr>
<td>Solar</td>
<td>8.50</td>
</tr>
<tr>
<td>Furniture</td>
<td>8.35</td>
</tr>
<tr>
<td>Mechanised Parking</td>
<td>14.00</td>
</tr>
<tr>
<td>Local Bodies Charges</td>
<td>1.15</td>
</tr>
<tr>
<td>Consultancy Services</td>
<td>0.70</td>
</tr>
<tr>
<td>Misc incl Contingencies & labour Cess</td>
<td>5.89</td>
</tr>
</tbody>
</table>

Unit cost Rs 41,610 / sqm. Rs 34,380/sqm. excluding parking & furniture.