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Satellite imaging reveals increased 
proportion of population exposed to floods

B. Tellman1,2,3,10 ✉, J. A. Sullivan2,3,4,10, C. Kuhn5, A. J. Kettner6, C. S. Doyle2,7, G. R. Brakenridge6, 
T. A. Erickson8 & D. A. Slayback9

Flooding affects more people than any other environmental hazard and hinders 
sustainable development1,2. Investing in flood adaptation strategies may reduce the 
loss of life and livelihood caused by floods3. Where and how floods occur and who is 
exposed are changing as a result of rapid urbanization4, flood mitigation infrastructure5  
and increasing settlements in floodplains6. Previous estimates of the global 
flood-exposed population have been limited by a lack of observational data, relying 
instead on models, which have high uncertainty3,7–11. Here we use daily satellite 
imagery at 250-metre resolution to estimate flood extent and population exposure for 
913 large flood events from 2000 to 2018. We determine a total inundation area of  
2.23 million square kilometres, with 255–290 million people directly affected by floods.  
We estimate that the total population in locations with satellite-observed inundation 
grew by 58–86 million from 2000 to 2015. This represents an increase of 20 to 24 per 
cent in the proportion of the global population exposed to floods, ten times higher 
than previous estimates7. Climate change projections for 2030 indicate that the 
proportion of the population exposed to floods will increase further. The high spatial 
and temporal resolution of the satellite observations will improve our understanding 
of where floods are changing and how best to adapt. The global flood database 
generated from these observations will help to improve vulnerability assessments, the 
accuracy of global and local flood models, the efficacy of adaptation interventions and 
our understanding of the interactions between landcover change, climate and floods.

Damaging floods are increasing in severity, duration and frequency, 
owing to changes in climate, land use, infrastructure and population 
demographics7,12–14. An estimated $651 billion (USD) in flood damages 
occurred globally from 2000 to 20192. Investments in flood adaptation 
reduce mortality and asset losses3,15. Yet, only 13% of disaster funds are 
allocated to preparedness, mitigation and adaptation16. Fundamental 
to prioritizing disaster mitigation efforts is quantifying global changes 
in flood hazard, exposure and vulnerability. We use the IPCC17 defini-
tions of ‘flood hazard’ as the frequency and magnitude of events and 
of ‘exposure’ as the people, livelihoods, ecosystems and assets located 
where a hazard has or could occur. ‘Vulnerability’ is defined as the pro-
pensity for loss of lives, livelihoods and property and for other aspects 
of wellbeing to be adversely affected18. Previous global flood exposure 
and vulnerability studies have relied on modelled flood hazard7,8,10,19. 
One study estimates that population growth in 100-year floodplains 
(areas with a 1% annual flood probability) outpaced total population 
by 2.6% from 1970 to 2010 in 22 countries7. Vulnerability influences a 
wide range of adverse outcomes from flood events, including death, 
disease, psychological trauma, migration, property loss and poverty20. 
Studies enabled by global flood models reveal trends including declines 
in loss of life and reduced property damage when controlling for hazard 

size3,10,11. Sub-Saharan Africa is the only region with increasing flood 
mortality rates since 199010, where urban flooding has been growing 
and is expected to continue to do so7,8.

Flood exposure and vulnerability assessments are limited by the 
uncertainty in hazard models, which is due to the challenges of incor-
porating rapid anthropogenic change, to inadequate calibration data 
and to poor quality topographic data21. Humans modify land use and 
rivers, shifting flood water and reshaping exposure5,22. Differences in 
modelling assumptions lead to high disagreement between population 
and area exposure estimates across models9,21. Contrary to models, 
satellite-based remote sensing can directly observe inundation23,24, 
implicitly accounting for changes in climate, land use and infrastructure 
that are not reflected in modelled flood extents.

Here we measure global flood exposure from earth-observing satel-
lites. We developed the Global Flood Database to systematically map 
the maximum observed surface-water extent during 913 large flood 
events documented by the Dartmouth Flood Observatory (DFO) from 
2000 to 2018. The Global Flood Database (http://global-flood-database.
cloudtostreet.info/) complements existing surface-water products that 
consist of monthly25 or daily26 observations by providing a geospatial 
event catalogue to aid model calibration and intercomparison27. With a 
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spatial resolution of 250 m, the moderate-resolution imaging spectrora-
diometer (MODIS; a multispectral optical instrument mounted on NASA’s 
Terra and Aqua satellites that each image the globe daily28) resolves large, 
slow-moving flood events, but has limited ability to resolve urban floods. 
We estimate exposure trends using methods similar to a previous study7, 
by comparing the proportion of the observed flood-exposed popula-
tion in 2015 to that in 2000 for each country (equation (6), Methods). 
Owing to uncertainty in population data29, exposure is estimated as a 
range across two datasets: the global human settlement layer (GHSL)30 
and the high-resolution settlement layer (HRSL)31. We then estimate 
change in flood exposure for the near future (2030), using flood hazard 
extents from the Global Flood Risk with Image Scenarios (GLOFRIS) 
model, which is based on present-day emissions scenarios32 and socio-
economic trends33 for large events (the 100-year return period). We 
compare observations from the recent past (2000–2015) to modelled 
estimates in 2030 to identify countries on slowing, continuing or increas-
ing flood exposure trajectories. This analysis may enable prioritization 
of adaptation measures where flood exposure has been growing or may 
grow faster than the total population under a changing climate.

Satellite-observed inundation
We analyse 12,719 MODIS images from 2000 to 2018 to produce 
913 flood maps (Fig. 1a, Extended Data Fig. 1). We detected surface 
water at 250-m spatial resolution by applying empirically derived 
and Otsu-optimized thresholds34 (Extended Data Fig.  2) to the 
short-wave-infrared, near-infrared and red bands (bands 7, 2 and 1) 
from MODIS. Results were validated using 30-m-spatial-resolution 
Landsat scenes coincident with the day of maximum inundation (n = 123 
events) for 30,685 points, yielding a mean accuracy of 83% (s.d. = 15%) 
for empirical thresholds and 80% (s.d. = 12%) for Otsu thresholds 
(Extended Data Fig. 3). Errors of commission (greater than 65%) were 
concentrated in northern latitudes, where low sun angle on dark soil 
causes low reflectance that mimics water35. Errors of omission show 
no geographic pattern (Extended Data Figs. 4, 5).

Of the 3,054 flood events in the DFO catalogue (compiled largely 
from news reports), we successfully mapped 913 events with mostly 
cloud-free MODIS observations. We found no temporal bias of events 
over time due to increased news-media-reporting trends in the DFO 
catalogue when compared to another database (the Emergency Events 
Database36; Extended Data Fig. 9a). MODIS could not detect floods in 
2,141 events because of persistent cloud cover (n = 495 events), small or 
flash floods (n = 300 events), inaccurate catalogue locations (n = 94), 
complex terrain (for example, dense forest, cities; n = 44 events) or 
other reasons (n = 1,208; Extended Data Fig. 6, Supplementary Table 9). 
Event maps may underrepresent the maximum flood extent, owing to 
the aforementioned uncertainty, and damaging floods underrepre-
sented by the media may be absent from the DFO catalogue.

Most events in the Global Flood Database occurred in Asia (n = 398; 
52 in China and 85 in India), followed by the Americas (n = 223; 98 in the 
US), Africa (n = 143), Europe (n = 92) and Oceania (n = 57; Fig. 1a). Many 
flood events occurred across multiple countries, giving rise to 2,617 
single-country events observed by MODIS. We estimate that 255–290 
million people (about 3% of the global population) have been exposed 
to at least one observed event since 2000 and three flood events on 
average (735–892 million total exposures; Fig. 1c). Consistent with 
flood model estimates37, 90% of exposure is concentrated in south 
and southeast Asia. Most flood events were caused by heavy rainfall 
(n = 751), followed by tropical storms or surges (n = 97), snow or ice melt 
(n = 52) or dam breaks (n = 13). The largest cumulative global inundated 
area occurred in 2003 and 2007, with highest population exposure 
in 2007 and 2010. We highlight notable events with high human and 
socioeconomic losses in Fig. 2a–d.

Flood-exposed population 2000–2015
The total global population increased by 18.6% from 2000 to 2015, 
compared with 34.1% in areas of observed inundation. Between 2000 
and 2015, 58–86 million people, or 23%–30% of the total population 
exposed, were newly residing in areas where inundation was observed 
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Fig. 1 | Summary statistics of the Global Flood Database. a, Number of flood 
events in the Global Flood Database per country (colour scale), along with the 
centroid locations and area of each flood event (circles). Countries with no 
observations are shaded grey (NA, not available). b, Total (cumulative over 
2000–2015) exposed population (circles) and exposed area (colour scale) per 
country (Supplementary Table 6). c, Estimates of annual global population 

(right axis, red shading; upper bound, GHSL; lower bound, HRSL) and area 
inundated (left axis, blue line). The 913 flood events represent those for which 
high-quality data were available (Methods, ‘Flood map quality control’). 
Population and area exposure to floods are lower in 2000 and 2001 until a 
second satellite (MODIS Aqua) was launched, increasing the likelihood of 
mapping a flood. Base maps: Natural Earth, tmap R package51.



82 | Nature | Vol 596 | 5 August 2021

Article

at least once. The change in the proportion of the population exposed 
to large flood events (equation (6), Methods) represents a global-mean 
increase of 20%–24% (s.d. = 53%) across 119 countries. Increased flood 
exposure was concentrated in low- and middle-income countries 
(Fig. 4a). Flood exposure trends are probably underestimated in rap-
idly urbanizing countries, because urban floods are underrepresented 
in the Global Flood Database. We excluded 15 countries from the trend 
analyses because the uncertainty in the population estimates was larger 
than the estimated trends (Supplementary Discussion). The proportion 
of the population exposed to floods increased across all flood types, 
but was highest in regions with floods caused by dam breaks, where 
it increased by 177% (Supplementary Table 8). Increased exposure 

near flood mitigation infrastructure (such as dams) could be due to 
the levee effect38.

The proportion of the population in inundated areas increased by 
more than 2% in 70 countries and by more than 20% in 40 countries. 
Example locations with large population growth in observed inunda-
tion areas include Guwahati, India and Dhaka, Bangladesh (Fig. 3c, d). 
Countries with increased flood exposure were concentrated in Asia and 
sub-Saharan Africa. Large basins in south and southeast Asia (Indus, 
Ganges-Brahmaputra and Mekong) had the largest absolute numbers of 
people exposed (17.0–19.9 million, 107.8–134.9 million and 20.2–32.8 mil-
lion, respectively) and increased proportions of the population exposed 
to inundation (36%, 26% and 11%, respectively; Supplementary Table 7).
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Fig. 2 | Observed inundation and flood duration for selected extreme 
events. a, b, Observed inundation exceeding permanent water (from the Joint 
Research Program25) for the events in the Global Flood Database with the 
highest mortality (a; cyclone Nargis, Burma, 2008; roughly 100,000 people) 
and with the most expensive recovery (b; hurricane Katrina, USA, 2005;  

$60 billion (USD)). c, d, Flood duration exceeding permanent water for the 
events in the Global Flood Database with the highest estimated exposure (c; 
India and Bangladesh, 2004; 27 million people exposed) and with the largest 
area (d; Russia, 2003; 98,000 km2). Base maps: Light Gray Canvas, Esri, HERE, 
Garmin, INCREMENT P, OpenStreetMap contributors and the GIS user community.
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In 21 countries, there was little change in the proportion of the population 
exposed to floods (between −3% and 2% growth), especially where popula-
tions have declined in eastern Europe and Russia39. Population growth in 
floodplains was heterogenous across countries. For example, in Brazil, 
flood exposure increased on average, but little to no population growth 
was observed in inundated areas recorded in the city of Manaus (Fig. 3b).

In 28 countries, the proportion of the population exposed to floods 
decreased by more than 3%. For example, in the US, the flood-exposed 
population decreased in New Orleans after hurricane Katrina (Fig. 3a)40. 
Our data indicate that the flood-exposed population decreased in Sri 
Lanka, potentially because nearly 500,000 people41 were displaced 
after the 2004 tsunami, as a result of policies that required residents to 
relocate 100 m from the shoreline. In the Yangtze basin, the proportion 
of the population exposed to floods decreased by 7%. MODIS prob-
ably did not capture increases in urban flood exposure in at least eight 
countries with rapid urbanization (for example, with annual urbaniza-
tion greater than 3%; Angola, Afghanistan, Cambodia, Namibia, Chad, 

Senegal, Sierra Leone and Oman42, see double asterisks in Supplemen-
tary Table 5).

Estimated flood exposure 2010–2030
We calculated the population that will be exposed to floods in the 
near future (2010–2030) in countries with sufficient MODIS obser-
vations (n = 119 countries), using the World Resources Institute 
flood-risk analyser Aqueduct37. Across these countries, the flood 
model (GLOFRIS) estimates that 580 million people were exposed to 
a 100-year-return-period flood in 2010. By 2030, the World Resources 
Institute37 estimates that up to 758 million people will be exposed in 
the 100-year flood zone, with the additional 179.2 million people being 
exposed as a result of demographic shifts (116.5 million people) or 
climate change (50.3 million people; assuming representative concen-
tration pathway (RCP) 8.5), and synergistic climate–land use interac-
tions (12.4 million people). The proportion of the population exposed 
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to floods is expected to increase globally by 2030, but with variation 
across countries (Fig. 4b; global-mean increase of 4%, s.d. = 90%) and no 
sensitivity to the return period (Extended Data Fig. 8). In 57 countries, 

the increase in flood exposure is expected to outpace future popula-
tion growth, especially in Asia and Africa7. Although we are already 
halfway towards these projections, they remain uncertain because of 
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uncertainty in climate43 and future population models. The difficulty 
in predicting changes in migration patterns and country-specific urban 
development means that increases in future flood exposure could be 
underestimated where urbanization is rapidly increasing.

We compare the change in the proportion of the population exposed 
to observed large flood events in the recent past (between 2000 and 
2015) and predicted to be exposed in the near future (between 2010 
and 2030) for the 106 countries with robust population data, using 
equation (7) (Methods). We identify countries for which a change in 
flood exposure greater than the population growth is new or continu-
ously increasing, and for which the change in flood exposure relative 
to population growth is decreasing or the same. For this classification, 
‘new’ signifies flood exposure increasing more rapidly than popula-
tion only in the future period; ‘decreasing’ signifies flood exposure 
increasing more rapidly than population only in the past period; ‘con-
tinuously increasing’ signifies flood exposure increasing more rapidly 
than population growth in both time periods; and ‘never increasing or 
little change’ signifies flood exposure increasing more rapidly than 
population growth in neither time period.

Nine regions and 32 countries, spread across four continents, have 
‘continuously increasing’ flood exposure (Fig. 4c, Supplementary 
Tables 4, 5). Five of these countries (four in Africa plus India) exhibit 
high continuing increases (more than 20%) in the proportion of the 
population exposed to floods. Five regions and 25 countries will have 
‘new’ flood exposure, concentrated in Europe and North America, with 
the highest increases (more than 50%) in the flood-exposed proportion 
in Oman and Sudan. Although 3 regions and 29 countries have ‘decreas-
ing’ flood exposure, models still estimate that 2.2 million additional 
people will be exposed to 100-year-return-period floods by 2030 in 
those countries. Three regions (Melanesia, Central Asia, and Western 
Asia (the Middle East)) and 20 countries have seen ‘never increasing 
or little change’ in flood exposure.

Discussion
Our results provide evidence from satellite observations that increases 
in flood exposure are higher (20%–24% from 2000 to 2015) than previ-
ously estimated (2.6% from 1970 to 2010)7. We find that the proportion 
of the population exposed to floods increased in 70 countries, across 
all continents. This finding is in contrast to previous studies that report 
increases in only 22 or 55 countries, concentrated in sub-Saharan Africa 
and Asia7,10. We identify additional increases in flood exposure in south-
ern Asia, southern Latin America and the Middle East. Our estimates are 
higher than previous ones probably because our observations capture 
floods caused by dam breaks, pluvial events and snowmelt, which are 
not included in global models. In addition to increased flood exposure 
in the recent past, we identify 57 countries where exposure is predicted 
to grow, indicating flood-prone development patterns that place lives 
and livelihoods at risk.

There are four limitations in our analysis: (1) the incomplete event 
record, which does not include smaller yet impactful flood events44;  
(2) the limited ability of MODIS to map urban floods; (3) the uncertainty 
in the spatial population distribution; and (4) the uncertainty in predict-
ing climate extremes. The Emergency Events Database36 estimates that 
more than 1.1 billion people were exposed to flood events from 2000 
to 2018, 159–208 million more people than estimated by our database. 
Our study probably underestimates flood exposure trends in rapidly 
urbanizing countries, owing to uncertainty in satellites and population 
growth models. The population data used in this study tend to overesti-
mate observed flood exposure29, with uncertainties too large to reliably 
estimate a flood trend for 15 countries (Supplementary Discussion).

Future work could improve flood-exposed population estimates by: 
(1) incorporating more events (for example, through social media45) and 
satellites over longer time periods or at higher resolution; (2) model-
ling event extents where satellite temporal coverage is insufficient (for 

example, flash floods); (3) assigning return periods to compare trends 
from observations to models; and (4) improving spatial estimates of 
the past, present and future global population.

The Global Flood Database provides a catalogue of global spatial 
flood event data at 250-m resolution, available for public download. 
These data could aid calibration of flood models and comparison to 
improve modelled flood hazard and exposure estimates. Identifying 
human settlement growth in areas of observed inundation could inform 
adaptation strategies such as mitigation and managed retreat46. Flood 
observations may affect the pricing of financial instruments such as 
municipal bonds47 and insurance48, and may aid planning for a chang-
ing (or already changed) tax base. Population growth in the observed 
inundated areas is largely due to increased economic development 
and migration to floodplains. Floodplains may be expanding because 
of increasing impervious surface area49 and climatic changes14. Increas-
ing flood exposure is also rooted in historical and political processes 
that produce conditions that may make settling in floodplains the only 
option for vulnerable populations50. Vulnerability analyses, together 
with the improved flood exposure estimates presented here, should 
drive investment in flood adaptation directed to the people and places 
that need it most.
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Methods

Flood event catalogues
We used the DFO flood event catalogue as the source for identifying 
dates and approximate locations of 4,712 major flood events since 
1985 (as of 31 December 2018; Extended Data Fig. 1a). Other publicly 
available global flood event catalogues, such as the Emergency Events 
Database (Em-Dat)36, have limited location data at the country level. 
Mapping entire countries when an event occurs in a small area or crosses 
borders introduced computational challenges and errors. The DFO 
database provides spatial estimates of flood locations (for example, 
points and polygons), not available in Em-Dat, that allow us to filter 
satellite imagery repositories in focused areas for application of flood 
detection algorithms. DFO also lists the main flood cause, which we 
simplified into four categories: dams, heavy rain, snow or ice melt, and 
tropical storms and surges (Supplementary Tables 6, 8).

The inclusion criteria for DFO (primarily large-media-coverage 
events, including those covered by FloodList (http://floodlist.com/)) 
and Em-Dat (10 or more flood-related deaths or at least 100 people 
affected) differ and possibly introduce bias. We compared DFO and 
Em-Dat events temporally and spatially at the country level to assess 
the differences. We matched the DFO and Em-Dat events over the study 
period (2000–2018; during the satellite data record) by using country 
names and overlapping date periods, using the fuzzyjoin R package52.

The number of total flood events in the DFO from 2000 to 2018 
(n = 3,195) is greater than that in Em-Dat before 2009 (n = 3,010), but 
less than that in Em-Dat after 2009 (Extended Data Fig. 9a). The number 
of flood events per year in DFO and Em-Dat is positively and significantly 
correlated over time (Pearson correlation r = 0.591, P < 0.01), consist-
ent with previous results for 1985–2019 (r = 0.636, P < 0.001)14. Spatial 
comparison reveals that DFO reports more floods than Em-Dat in the 
US (192 more events), Australia (79 more events) and Russia (31 more 
events), but fewer events in South America (36 fewer events), Central 
America (30 fewer events), the Caribbean (20 fewer events) and Africa 
(166 fewer events; 94 fewer in west Africa; Extended Data Fig. 9b). This 
comparison between the databases suggests that the DFO represents 
trends in major flood events over time, but may underrepresent floods 
in Africa and South America.

Satellite data and inundation detection algorithm
For historical flood observation, we use the MODIS instrument onboard 
NASA’s Terra and Aqua satellites. MODIS is an optical satellite com-
monly used for inundated area mapping26,53–57, is freely available and 
has had consistent daily coverage since February 2000 and twice-daily 
coverage since February 2001. The DFO contains 3,127 eligible flood 
events that co-occurred with MODIS imagery (Extended Data Fig. 1b).

We used the Google Earth Engine platform58 to preprocess and apply 
water detection algorithms to the MODIS images. The polygon areas 
provided by DFO represent approximate areas affected by the events. 
Therefore, we selected all HydroBASINS Level 459,60 watersheds that 
intersect with the DFO event polygon as our mapping unit (region of 
interest) for each event. For each event in the database, we collected 
and analysed every MODIS image acquired over the selected watersheds 
during the event date range provided in the DFO. In total, we analysed 
12,719 individual MODIS tiles across the 3,127 events (Extended Data 
Fig. 1).

Terra (MOD09GA/GQ) and Aqua (MYD09GA/GQ) MODIS images used 
in this study were corrected for atmospheric scattering and absorption 
to provide estimates of surface reflectance at resolutions of 250 m and 
500 m61. MODIS data provide reflectance values (stored as digital num-
bers scaled by 10,000) in the visible (457–670 nm) and near-infrared 
(841–1,250 nm) wavelengths at 250-m resolution; short-wave-infrared 
(1,628–2,155 nm) wavelengths commonly used to identify surface 
water are provided at 500-m resolution. We pan-sharpened the 
short-wave-infrared band to 250 m using an adapted version of the 

corrected reflectance algorithm62 to match the resolution of other 
bands.

Estimates of inundation extent were produced at 250-m resolution 
using thresholding approaches based on an existing algorithm53. We 
produced inundation maps for every event using four versions of the 
algorithm: 3-day standard, 2-day standard, 3-day Otsu and 2-day Otsu.

The ‘standard’ versions of the algorithm identify water using fixed 
threshold values on stored reflectance values (digital numbers) of 
the short-wave-infrared (SWIR) band (band 7; 1,628–1,652 nm) and an 
index, B2B1ratio, defined as

B1B2 =
DN + 13.5

DN + 1,081.1
, (1)ratio

NIR

red

where DNNIR and DNred are the digital numbers of the near-infrared 
(band 2) and red (band 1; 621–670 nm) bands. A pixel is classified as 
water via the following:

C K Kpixel = DN < ∨ B1B2 < ∨ DN < . (2)water red ratio 1 SWIR 2

In the standard algorithm, K1 = 0.7, K2 = 675 and C = 2,027. The con-
stants in equations (1) and (2) were determined empirically (R2 = 0.91) 
using regression discharge data from the US Geological Society 
(USGS)-gauged river reaches53.

The ‘Otsu’ versions of the algorithm adjust the thresholds by estimat-
ing K1 and K2 (equation (2)) adaptively for each flood event34,63. Otsu 
thresholding requires a bimodal distribution, in our case representing 
spectral reflectance of water and non-water, to determine a thresh-
old that minimizes interclass variance (that is, misclassification). We 
extracted a sample of 2,500 water and non-water pixels (1,250 sampled 
for each class) from a median composite of MODIS images for each 
flood event, with clouds removed using the internal cloud-state band. 
Water and non-water pixels for each flood event were differentiated by 
matching the flood event year to the permanent water classification for 
that year from the Joint Research Center global surface-water yearly 
history dataset25. From our sample, interclass variance was calculated 
as the between sum-of-squares (BSS):

∑BSS = (DN − DN ) , (3)T
k

T k T,
2

where DNT,k is the average mean surface reflectance (provided as a 
digital number) in band T and class k defined by a selected threshold. 
BSST was calculated iteratively across each bin of a bimodal histogram, 
representing candidate threshold values, for B2B1ratio and DNSWIR. The 
maximum BSST, and thus the minimized interclass variance, was 
selected as a threshold for both B2B1ratio and DNSWIR, and then applied 
to equation (2) (Extended Data Fig. 2a, b). Using the flood events that 
passed quality control (see below), the average Otsu thresholds for 
B2B1ratio and DNSWIR were K1 = 0.77 and K2 = 599, respectively (Extended 
Data Fig. 2c, d). Compared to the standard thresholds, the Otsu method 
provides threshold estimates that represent global water conditions 
as opposed to USGS gauge data. Although the Otsu method estimates 
event-optimized thresholds, the fact that the median Otsu thresh-
olds approximate the standard thresholds confirms that the standard 
thresholds perform consistently on a global basis.

We use equation (2) to classify each MODIS image over a region 
of interest and period of a flood event. After classifying each MODIS 
image, using either standard or Otsu versions, we calculate multiday 
composites to reduce false detections. Using 3-day composites, a pixel 
maintains a water classification if at least three observations out of a 
possible six (at least 50%) were classified as water; 2-day composites 
require two observations out of four (at least 50%). Reducing images to 
multiday composites removes misclassifications due to cloud shadow, 
a common misclassification with water64. We did not mask clouds 
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with the MODIS 1-km internal cloud-state band, because it removed 
large portions of flooded area detectable under thin or cirrus cloud 
conditions. To prevent confusion between water and terrain shadows, 
areas with slopes greater than 5° were masked out of the final clas-
sification using a digital elevation model65, similarly to other water 
detection studies57.

Inundated pixels are defined as those classified as water following 
the 3- or 2-day compositing and that lie outside of permanent water 
defined by the Global Surface Water dataset25. In the Global Surface 
Water dataset, pixels are identified as permanent water when the Land-
sat observations in 1985–1999 and in 2000–2016 have water presence. 
After post-processing, each flood event has four data products (3-day 
standard, 2-day standard, 3-day Otsu and 2-day Otsu), each of which 
contains four bands: (1) the maximum extent of inundation; (2) the 
number of days inundated; (3) the number of clear observations; and 
(4) the proportion of clear observations.

Evaluating the inundation detection algorithm
To assess the accuracy of the Global Flood Database, we identified 
123 flood events with coincident Landsat 5, 7 and 8 imagery at 30-m 
resolution available within 24 h of the day of maximum inundation 
and less than 20% cloud cover. Maximum inundation dates were 
estimated by selecting the day (between the start and end dates for 
each event) with the largest inundated area estimated by the flood 
detection algorithm. The 123 flood events used for accuracy assess-
ment span 15 biomes, representing diverse landscape conditions66 
(Extended Data Fig. 3).

The number of sampling points selected in remote sensing analysis 
can affect map accuracy60. We conducted sensitivity analysis to deter-
mine the number of validation points required to minimize the variance 
in precision, recall and overall accuracy. We sampled 500 points for 10 
floods events, stratified as 25% in permanent water, 50% in flood water 
and 25% in non-water regions. Points were randomly subsampled, with-
out replacement, to assess accuracy from 0 to 500 points (Extended Data 
Fig. 4a). We found that the standard deviation in accuracy fell below 0.1 
when 250 or more points were sampled, and therefore chose to sample 
250 points per flood event for the remainder of the dataset.

Interpretation of validation points was undertaken by a team of ana-
lysts who identified each point as water, non-water or no data, totalling 
30,685 validation points. These analysts had access to Landsat images 
visualized in natural colour, false-colour infrared and two indices that 
highlight water (the normalized difference vegetation index and the 
modified normalized difference water index)56,67 to decide whether each 
pixel was at least 50% dry or wet. Each validation point was assessed by 
three separate analysts, with the majority vote determining the class 
of the validation point.

Classification agreement and errors were calculated by comparing 
per pixel classes from the produced flood maps to the validation data 
(Supplementary Table 1). Errors of omission (εom) and commission 
(εcom)56 were calculated as follows:

ε
f

t f
=

+
, (4)om

n

p n

ε
f

t f
=

+
, (5)com

p

p p

where tp is the count of true positives, fn is the count of false negatives 
and fp is the count of false positives.

The 3-day standard algorithm performed best, with an overall accu-
racy of 83%. 43% of floods had accuracies of more than 90% and 65% had 
accuracies above 75% (Supplementary Table 2). The standard version 
of the algorithm was more consistent than the Otsu version. Although 
Otsu thresholds reduced false detections and increased accuracy in 

some events, other events resulted in overpredicted flood extent 
(Extended Data Fig. 4b). Errors of omission had no clear geographic 
pattern, whereas errors of commission were inflated at higher latitudes 
(Extended Data Fig. 5).

Flood map quality control
To create the final library of flood maps, every map underwent a qual-
ity control process to eliminate poor-quality maps and choose the 
best map between the two thresholding methods. Because the 3-day 
composite versions of the algorithms had higher accuracy than the 
2-day composite versions on average, all final maps were chosen from 
the 3-day composite results (Extended Data Fig. 4c). Each flood map 
(n = 3,195) was visually inspected to assess whether the map was a suit-
able representation of flooding. We used a quality control procedure 
similar to that for the NASA flood detection algorithm35. Quality con-
trol was completed by analysts, using the metrics summarized here 
(see Supplementary Table 3 for a complete list). Analysts recorded: 
(1) whether a flood map mapped area additional to permanent water 
(from water masks25,68 or Google Earth); (2) whether a flood map was 
obscured by clouds; and (3) which version of the algorithm (stand-
ard or Otsu) best matched visible water from MODIS imagery for the 
maximum inundation date. They determined the product to be a use-
ful representation of the flood event if it mapped inundation beyond 
permanent water and was not largely obscured by clouds. To make 
quality control decisions, analysts viewed the DFO polygon, all original 
MODIS imagery for the flood event, the standard flood map, the Otsu 
flood map, underlying high-resolution satellite imagery from Google 
Earth and a hyetograph of the 95th percentile of precipitation in the 
region of interest estimated by the PERSIANN data product69.

279 flood events were assessed by at least two separate analysts to 
calculate intercoder reliability. Analysts agreed on classifying the flood 
event as “a useful representation of the flood event” (Supplementary 
Table 3, question 3) for 203 events, representing 73% intercoder reli-
ability. Flood events marked as ‘maybe’ or for which analysts disagreed 
were quality checked by B.T. to make final decisions.

Some floods of low quality may be present in the database that should 
not have passed quality control, and local knowledge of any area should 
be leveraged when using these global data. We encourage users to 
pair our online catalogue of events and flood dates with the MODIS 
worldview tool (https://worldview.earthdata.nasa.gov/) to visually 
examine whether additional flood extent could be mapped by down-
loading individual MODIS images where water is present in only 1–2 
observations and therefore underestimated in the 3-day composites. 
Supplementary Table 9 includes the quality control information for 
each flood event.

Quality control results yield 913 flood maps determined to be use-
ful representations of flooding (29.4% of the all DFO events that were 
mapped). Maps that used Otsu thresholding (124 flood extents; 13.6%) 
were shown to better capture flood extent than those that used stand-
ard threshold, but most flood maps used the standard threshold (789 
flood extents; 86.4%). The Global Flood Database produced by this 
study therefore includes 789 maps using the standard threshold and 
124 maps using event-specific Otsu thresholds.

A large proportion of flood events from the DFO (2,212 events; 43.1% 
of events mapped) did not reveal areas of widespread flooding and 
failed quality control (Extended Data Fig. 6). The top three reasons 
noted for failing quality control are extreme cloud cover (n = 495; 
16% of events), no standing water beyond existing permanent water 
(n = 300; 10% of events) and unmapped floods in urban areas (n = 44; 
1.5% of events). MODIS may fail to capture: (1) rapid, flash flood events; 
(2) small channels of water below 250-m resolution (for example, 
flooded streets in urban areas70); (3) inundation below dense canopy 
cover (for example, greater than 60%)71; and (4) maximum inunda-
tion if the event catalogue start and end dates are not inclusive of 
the peak flood day.

https://worldview.earthdata.nasa.gov/


Estimating observed flood exposure, recent past
To examine flood exposure trends, we use the multiplicative change 
in the proportion of the population exposed to floods between 2000 
and 20157:

p p

p p
change =

/

/
. (6)fe

2000–2015 fe
2015

tot
2015

fe
2000

tot
2000

Therefore, change = 1.35fe
2000–2015  is equivalent to a 35% increase; 

change = 1fe
2000–2015  (that is, no change) occurs when the total popula-

tion and flood-exposed population increase or decrease at the same 
rate.

Each country’s statistic is calculated individually (Supplementary 
Table 5) and the global mean is an average across countries (weighting 
each country equally). We also estimate the change in the proportion of 
the population exposed to floods for distinct flood types (Supplemen-
tary Table 8) and for the five basins with the largest total population 
exposed to floods in our archive (UK, Indus, Ganges-Brahmaputra, 
Mekong and Yangtze; Supplementary Table 7).

To estimate the global flood-exposed population, we calculated the 
maximum inundated area across the Global Flood Database between 
2000 and 2018. This observed inundated area was intersected with the 
GHSL for years 2000 and 2015 to calculate the flood-exposed popula-
tion. GHSL was selected because of its global availability over time with 
a consistent method, matching resolution of MODIS (250-m pixels) 
and better accuracy compared to other globally available population 
data72–75. GHSL allocates population from census data (within several 
years of 2000 and 2015) according to the intensity of built-up-area 
estimates from Landsat (for approximately 2000 and 2015). Other 
global gridded population datasets either use inconsistent methods 
over time (for example, Landscan)76 or inflate estimates in rural areas 
because population is not allocated on the basis of built-up area29,77.

GHSL population estimates have multiple sources of error, including 
census estimates, incorrect estimation of built-up area or failing to dis-
tribute population in rural areas where forest cover obscures built-up 
area. Unfortunately, neither the Gridded Population of the World (GPW) 
nor GHSL datasets provide uncertainty estimates72. To understand 
potential sources of error, we conducted a sensitivity analysis on the 
flood-exposed population in 2015 estimated by GHSL compared to a 
higher-resolution dataset, HRSL (Supplementary Discussion). HRSL 
was selected as a second dataset for its high resolution (30-m) and 
near global representation (n = 183 countries).

We found that the global-mean bias of HRSL to GHSL was 0.67 
(s.d. = 0.40), indicating that GHSL systematically predicts higher 
flood-exposed populations. The bias of GHSL to predict more exposed 
population was not constant by region; bias was three times as high in 
Africa compared to Europe (Supplementary Discussion, Extended Data 
Fig. 7). We estimate all absolute numbers of exposed population in a 
range, using upper and lower bounds estimated from the two popu-
lation datasets. Countries (n = 15) for which the potential population 
error spread was higher than the flood trend are not included in trend 
analyses (Supplementary Table 5, single asterisks).

Owing to the potential noise of scattered singular flood pixels, espe-
cially along coastlines, which contain mixed pixels at the ocean–land 
interface, we removed isolated pixels (not connected to at least two 
other pixels) for area and population calculations. This reduced the 
population exposure count globally by approximately 20 million peo-
ple, but did not change the results of the comparison to global flood 
models or trends.

The flood-exposed population was estimated per country by sum-
ming populations residing in the observed floodplain for years 2000 
and 2015. Countries with a ratio of flood maps to total known flood 
events from the DFO of less than 0.13 (the 50th percentile across all 
countries) were marked as having insufficient data (n = 86 countries; 

Extended Data Fig. 6c), leaving 119 countries for this trend analysis. 
Country estimates of the population inundated in at least one observed 
flood event from 2000 to 2018 are significantly correlated with flood 
exposure estimates from GLOFRIS78 for the 100-year return period 
(r = 0.89, P < 0.001; Extended Data Fig. 10). These results suggest that 
the distribution of the flood-exposed population recorded in the Global 
Flood Database is consistent with results from a flood model, and that 
the data may be used to compare past and future trends.

Estimating modelled flood exposure, near-term future
Estimates of the population exposed to future floods is taken from 
Aqueduct37, for each country available in the Global Flood Database and 
for which robust population data are available based on uncertainty 
analyses (n = 106). These data are from the output of GLOFRIS, which 
uses an average of five climate model outputs coupled to a hydrologic 
and hydraulic model. We used the RCP 8.5 climate model results and 
the 100-year flood zone, which is consistent with other flood exposure 
studies7,10,11,79, and the SSP2 socioeconomic pathways scenario (which 
predicts future growth will follow historical patterns)33. Flood exposure 
estimates for 2030 remain uncertain because climate models exhibit 
high uncertainty for extreme events and often disagree on precipitation 
trends43. The multiplicative change in the proportion of the population 
at risk of flood exposure is

p p

p p
change =

/

/
, (7)fe

2010–2030 fe
2030
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fe
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where pfe
2030 assumes RCP 8.5 and SSP2, and ptot

2030 assumes SSP2. We 
assessed the sensitivity of our choice of the 100-year flood zone and 
found little variation in trends in the population at risk of flood expo-
sure across return periods (Extended Data Fig. 8a–d, Supplementary 
Discussion).

We use estimates of flood-exposure population from Aqueduct80 
and summarize the methods here. The 2010 flood-exposure popula-
tion data in this product were estimated by intersecting the GLOFRIS 
inundated area with the Landscan 2010 gridded population81 corrected 
by the SSP2 2010 population cell estimates. 2030 population estimates 
in rural areas downscale SSP2 country estimates proportional to the 
2010 Landscan distribution. 2030 urban population estimates down-
scale SSP2 country projections, using projected urban land use from 
the Netherlands Environmental Assessment Agency 2UP model82 and 
local suitability for population growth. This 2030 projection does not 
take into account urban–urban or urban–rural migration patterns, or 
differentiate population growth suitability per country in protected 
areas or flood zones (which could be high in the Global South)83. Future 
flood-risk estimates may be overestimated in rural areas and underes-
timated in urban areas, which would mean that flood exposure trends 
reported here are probably underestimated in rapidly urbanizing 
regions.

Data availability
The MODIS Collection 6 datasets analysed here are available in the NASA 
LP DAAC at the USGS EROS Center (https://lpdaac.usgs.gov/products/
mod09gav006/, https://lpdaac.usgs.gov/products/mod09gqv006/) 
and are mirrored in the Google Earth Engine data catalogue (https://
developers.google.com/earth-engine/datasets/catalog/MODIS_006_
MOD09GA, https://developers.google.com/earth-engine/datasets/ 
catalog/MODIS_006_MYD09GQ). The MODIS NRT Global Flood 
Product is available in the NASA LANCE Near Real-Time Data and 
Imagery service (https://earthdata.nasa.gov/earth-observation-data/
near-real-time/mcdwd-nrt). The Landsat 5 TM, 7 ETM and 8 OLI surface 
reflectance products used for the accuracy assessment are available 
from USGS (https://earthexplorer.usgs.gov/) and are mirrored in the 
Google Earth Engine data catalogue (https://developers.google.com/
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developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_ 
C01_T1_SR, https://developers.google.com/earth-engine/datasets/
catalog/LANDSAT_LC08_C01_T1_SR) The datasets generated for this 
study from the Global Flood Database are available on the Cloud to 
Street website (http://global-flood-database.cloudtostreet.ai) and 
are mirrored in Google Earth Engine (https://developers.google.com/
earth-engine/datasets/catalog/GLOBAL_FLOOD_DB_MODIS_EVENTS_
V1). Supplementary Tables provide summary estimates for each event, 
and all data may be downloaded from http://global-flood-database.
cloudtostreet.ai/. Source data are provided with this paper.
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Extended Data Fig. 1 | Global distribution of flood events catalogued by the 
DFO and the Global Flood Database. a–c, Flood events in the DFO from  
1 January 1985 to 31 December 2018 (n = 4,712; a), in the DFO and coincident with 

MODIS imagery (n = 3,127; b) and that passed the quality control evaluation for 
the Global Flood Database (n = 913; c). Base map: US government Large Scale 
International Boundaries (LSIB) Polygons (2017).



Article

Extended Data Fig. 2 | Example of bimodal histograms used to calculate 
adaptive thresholds for water classifications that approximate, on 
average, the standard versions of the water classification thresholds.  
a, b, Example bimodal histograms (left axes) with interclass variance (ICV; blue 
lines, right axes) extracted from MODIS imagery used to determine optimal 
thresholds for B2B1ratio (K1; a) and DNSWIR (K2; b). The dashed red and black lines 
reflect the estimated Otsu and standard thresholds, respectively. 

 c, d, Distribution of estimated Otsu thresholds calculated for each flood event 
across the Global Flood Database (n = 913), for B2B1ratio (K1; c) and DNSWIR (K2; d). 
The average Otsu threshold across the Global Flood Database for B2B1ratio 
(K1 = 0.77; dashed red line in c) and DNSWIR (K2 = 599; dashed red line in d) are 
comparable to the standard thresholds (K1 = 0.70, dashed black line in a; 
K2 = 675, dashed black line in b).



Extended Data Fig. 3 | Distribution of Landsat 5, 7 and 8 imagery. The 
Landsat images used to evaluate 123 flood events in the Global Flood Database 
are globally distributed, cover 15 biomes66 and span 15 years. Flood events for 
validation were selected on the basis of availability of Landsat imagery. 
Eligibility of imagery included conditions that Landsat imagery occurred 

within 24 h of the maximum day of inundation, intersected the flood area and 
had less than 20% cloud cover. Biome shapefile for the base map (grey shading; 
https://ecoregions.appspot.com/) indicates varying vegetation patterns that 
may influence the accuracy of our remote sensing algorithm.

https://ecoregions.appspot.com/
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Extended Data Fig. 4 | Global Flood Database accuracy metrics.  
a, Sensitivity plot of accuracy metrics with random sampling of 500 points for 
10 flood events. b, Error analysis showing the distribution of true positive (tp), 
true negative (tn), false positive ( fp) and false negative ( fn) rates for each of the 
four water detection methods, where the centre line represents the median, 
the hinges represent the 25th and 75th percentiles, the upper whisker extends 

from the hinge to the largest value no further than 1.5*IQR (interquartile range) 
and the lower whiskers extends from the hinge to the smallest value no further 
than 1.5*IQR, and the dots show outlier points outside the whisker range.  
c, Accuracy statistics, given as the mean and standard deviation (s.d), 
summarized for each thresholding method and image composite choice 
(metrics per event in Supplementary Table 2).



Extended Data Fig. 5 | Global distribution of accuracy metrics based on 123 
flood events from the Global Flood Database. a, b, Overall accuracy (a) is 
consistently distributed across the globe, whereas errors of commission (b) 

are inflated at higher latitudes and errors of omission (c) are lower than errors 
of commission and have no clear spatial pattern. Base maps: GADM (Global 
Administrative Areas) 2018, version 3.6.
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Extended Data Fig. 6 | Results of the quality control assessment. Coverage 
of the Global Flood Database is well represented in southeast USA, Central 
America, South America, southeast Asia, Australia, west Africa and east Africa. 

a–c, Counts of flood events that passed (b) or failed (a) quality control (QC), 
and the proportion of events that passed as a ratio of total flood events (c). Base 
map: US government LSIB Polygons (2017).



Extended Data Fig. 7 | Population uncertainty analysis. a, Correction factors 
determined as the ratio of HRSL flood exposure to GHSL flood exposure per 
continent, where the centre line represents the median, the hinges represent 
the 25th and 75th percentiles, the upper whisker extends from the hinge to the 
largest value no further than 1.5*IQR (interquartile range) and the lower 
whiskers extends from the hinge to the smallest value no further than 
1.5*IQR, and the dots show points outside the whisker range. b, Uncertainty 

analysis for each country plotted against flood exposure trends (2000–2015). 
Countries in the upper right quadrant represent regions with plausibly high 
uncertainty in population estimates, such that we are not confident in their 
flood exposure trends (unc., uncertainty; inc., increasing trends; dec., 
decreasing trends). Countries are labelled by their ISO 1366 standard Alpha-2 
two-letter country codes (from LSIB) and coloured by continent.
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Extended Data Fig. 8 | Sensitivity analysis of return periods to changes in 
flood exposure, 2010–2030. a, Change in total population exposed to floods 
(logarithmic scale; 2030 minus 2010), for each return period, summarized by 
continent. b, Percentage increase in the population exposed to floods from 
2010 to 2030, for each return period. c, Percentage increase in total population 
from 2010 to 2030 for each continent. d, Multiplicative change in the 

proportion of the population exposed to floods (equation (7), Methods). For all 
boxplots (a–d), the centre line represents the median, the whiskers represent 
the 25th and 75th percentile, the upper whisker extends from the hinge to the 
largest value no further than 1.5*IQR (interquartile range) and the lower 
whiskers extends from the hinge to the smallest value no further than 
1.5*IQR, and the dots show points outside the whisker range.



Extended Data Fig. 9 | Comparison of the DFO and Em-Dat databases. We 
find moderate temporal correlation, greater representation of events in DFO 
than in Em-Dat in USA, Australia and Russia, and a smaller catalogue of events in 

DFO than in Em-Dat in Africa and Latin America. a, Annual flood events in DFO 
and Em-Dat. b, Number of flood events in DFO minus that in Em-Dat for each 
country. Base map: Natural Earth, tmap R package51.
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Extended Data Fig. 10 | Comparison for each country of the population 
exposed to floods in a 100-year event (using 2010 climate and population) 
determined from GLOFRIS and an estimate of the total population exposed 
from the Global Flood Database, 2000–2018. r = 0.89, P < 0.001. The blue line 

represents parity between the population determined from GLOFRIS and from 
the Global Flood Database line; the black line is the linear regression line. 
Country names are coloured by continent.
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