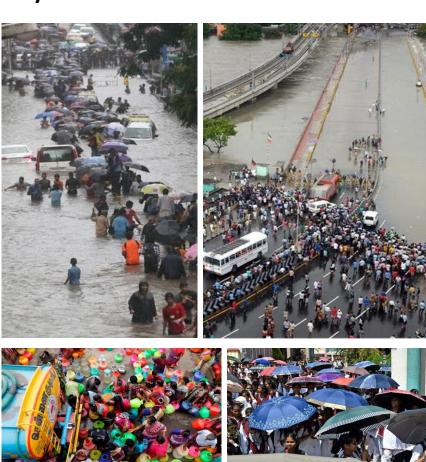


Session 9: Climate Change and Resilience: Framing of Water Sensitive and Water-Wise Cities in the Climate Change Context

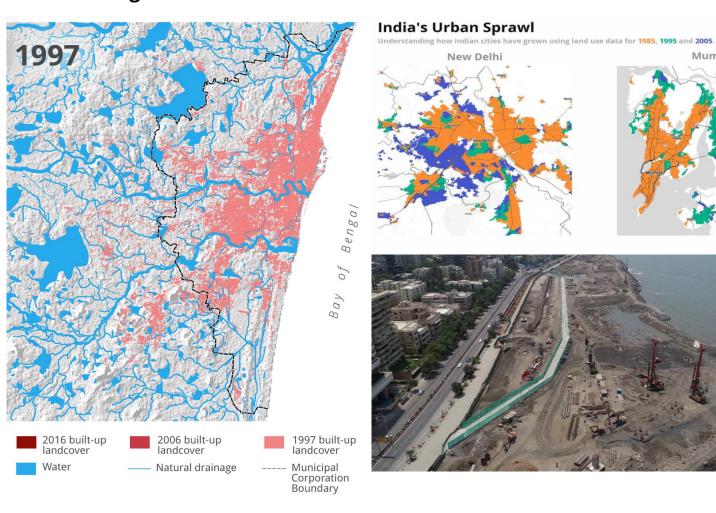
MAINSTREAMING NATURE-BASED SOLUTIONS IN INDIA'S CITIES

April 25 - 27, 2023

Structure of Presentation


Contents...

- OBJECTIVE & VISION: Addressing climate change through nature-based solutions
- THEORY OF CHANGE: How we are integrating nature-based solutions through planning, design and advocacy projects across multiple scales
- OUR CURRENT EFFORTS AND PROJECTS
- KEY TAKEAWAYS AND WAY FORWARD


OBJECTIVE

Mumbai

Key Climate risks in India

Exacerbating risks due to the nature of urbanization in India

VISION

Filtered Run-of via Green

Temporary water holding Sponge Space, Delaying Run-off

Key Principles

1. Protect

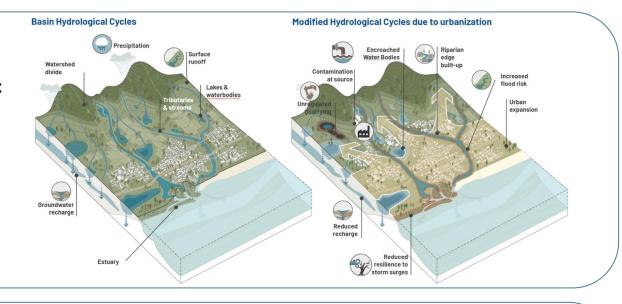
Green Ecosystems and Water Bodies from **Encroachment or** Pollution

2. Restore

Ecological Functions of Degraded or Polluted Landscapes

3.Enhance

Coastal, Riparian, **Wetland Ecosystems** with Hybrid Infrastructure


4. Construct

Blue-Green Infrastructure in open spaces, streets, and buildings

Key Approaches

By promoting strategic basin planning and water-sensitive urban design

Blue-Green Approach: Delaying, storing and filtering runoff in

By mainstreaming blue-green infrastructure planning and implementation in **Indian cities**

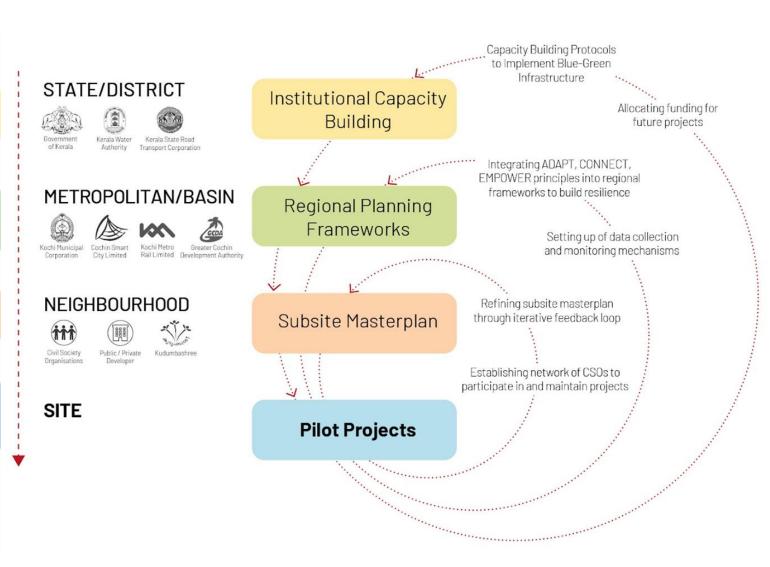
pipes and channelized canals or streams dispersed open spaces, naturalized streams, or streets before flowing into stormwater network Rtention and Less Run-offs Tidal Influx during king tides Delayed and reduced run-off

Gray Approach: Flushing stormwater as fast as possible through

THEORY OF CHANGE

Sponge Handbook: Chennai

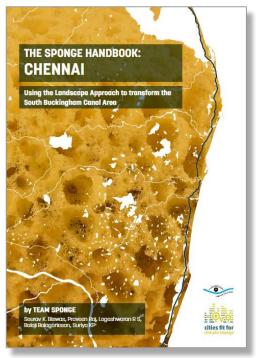
Chennai Third Vision Masterplan, CMDA


Theme: Sponge City And Climate Resilience

Adyar River Basin Vision

Sponge City: Detailed Feasibility Study In

Kosasthalaiyar Basin - Integrated Stormwater Design

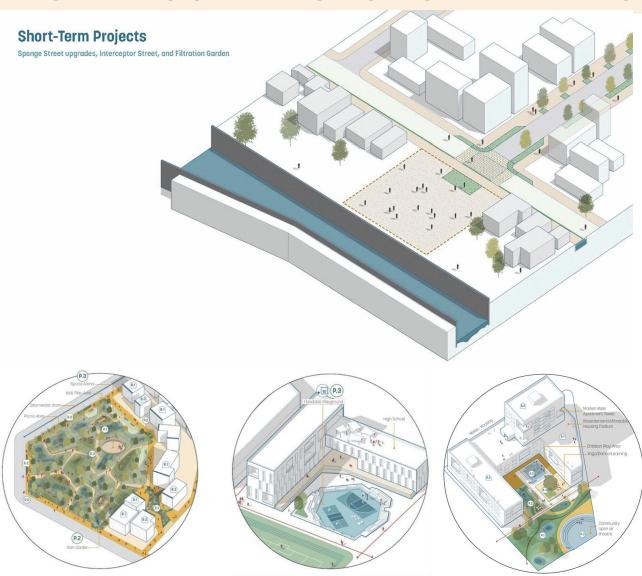

Sponge City Park: Pilot Project

INSTITUTIONAL SCALE: SPONGE HANDBOOK

SPONGE HANDBOOK: CHENNAI

https://issuu.com/skb347/docs/team_sponge_s ponge_handbook-chennai

CLIENTS


Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)| Gov't Departments of TN

THE POLICY & PRACTICE FORUM 2023

INSTITUTIONAL SCALE: SPONGE HANDBOOK

Sponge Open Spaces within Residential Courtyards

OUR CURRENT EFFORTS

Greater Chennai Corporation plans to set up 'sponge park'

TNN / Updated: Sep 2, 2021, 10:18 IST

f 🔰 in 🔯 🕹

ARTICLES

CHENNAI: To improve the groundwater table and prevent flooding, the city corporation has proposed to set up a 'sponge park' with artificial pond and rain gardens at the Kargil Nagar flood water pumping station in Manali zone.

HOW SUCH A PARK WORKS

- > A sponge park is an urban space constructed to collect, filter and store the run-off during heavy rainfall
- > A tank with several layers of filters using gravel, sand, and biofilters is set up at the centre of the park. It is an artificial wetland structure without any concrete flooring but water infiltration blocks
- > Several layers of pond zones are created around it to store water
- > Around these pond structures. a rain garden using native species of trees and a top layer of sand and compost is set up to allow faster water infiltration and percolation
- > During dry months, the space can be used as a park or recreation area

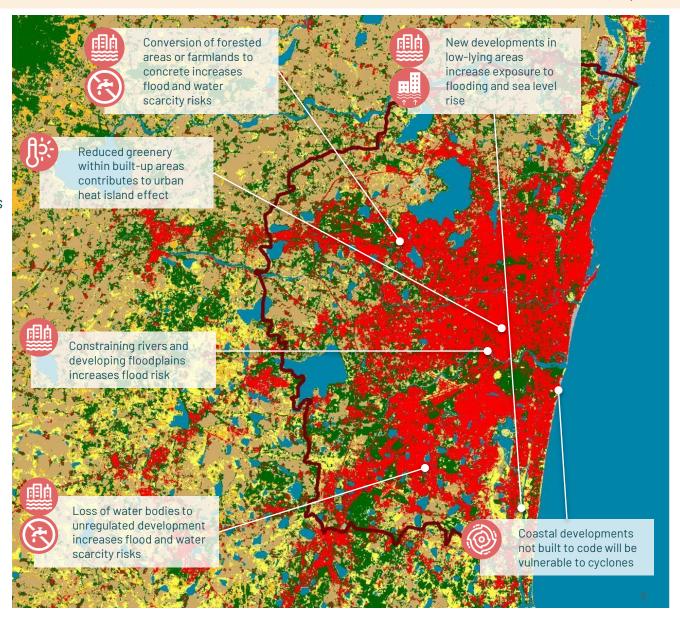
Chennai Corporation to develop sponge parks at 10 locations

The estimated cost of the sponge parks is ₹1.06 crore; the work will start this month and is expected to be completed in six months, ahead of the onset of the northeast monsoon, say officials

February 11, 2023 09:48 pm | Updated 09:48 pm IST - CHENNAI

READ LATER

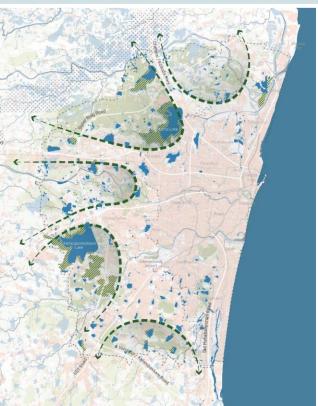
METROPOLITAN SCALE: THIRD MASTERPLAN VISION, CMDA

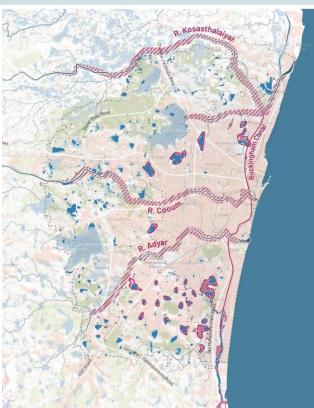

Metropolitan DiagnosticClimate Risks and Urban Development

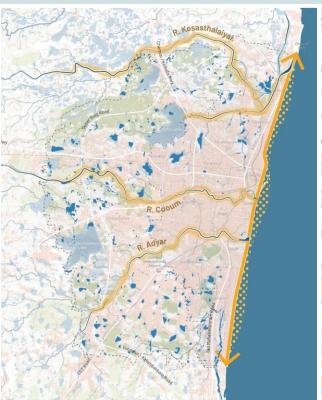
- Urban areas are exposed to elevated flood risks because of impervious catchments that lead to increased runoff.
- Lack of aquifer recharge due to imperviousness increases risk of water scarcity.
- Built-up areas also contribute to urban heat island effect increasing the risk of heat-related fatalities.
- Increased blue-green areas can mitigate some risks. But only 2% of Chennai city are declared parks (SMP); 24 km² of declared forest in CMA (SMP) and 91.31 km² of water bodies present in CMA (C&AG, 2017)

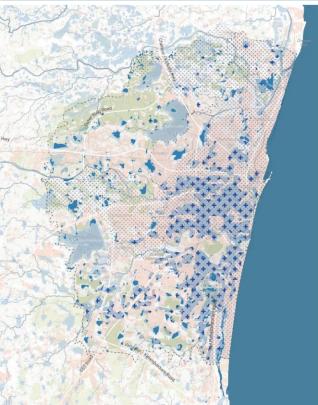
Land Cover

Source: Challenges in Chennai City to Cope with Changing Climate **Map Data:** ESA World Cover with Global Human Settlement Layer






METROPOLITAN SCALE: THIRD VISION MASTERPLAN, CMDA


Sponge City Ecological Framework

- PROTECT Ecosystems and water bodies from encroachment or pollution(P)
- **RESTORE** Ecological functions of degraded or polluted landscape **(R)**
- riparian, and wetland areas to withstand climate change (E)
- infrastructure in urban open spaces, streets, and buildings to replicate natural systems (C)

METROPOLITAN SCALE: THIRD MASTERPLAN VISION, CMDA

Sponge City Chennai

Where and how should Chennai prioritize the following nature-based solution actions?

- **PROTECT** Ecosystems and water bodies from encroachment or pollution **(P)**
- **RESTORE** Ecological functions of degraded or polluted landscape (R)
- **ENHANCE** Coastal, riparian, and wetland areas to withstand climate change **(E)**
- **CONSTRUCT** Blue-green infrastructure in urban open spaces, streets, and buildings to replicate natural systems **(C)**

PROTECT Peri-Urban Aquifer Recharge Areas from urban spraw PROTECT Peri-Urban Wetlands and Drinking Water Reservoirs **RESTORE** Polluted **ENHANCE** Riparian Rivers and Estuaries Areas and Buffers to limit riverine flooding **CONSTRUCT** Blue-green Infrastructure in flood-**CONSTRUCT** Aguifer prone areas recharge infrastructure in high yield zones PROTECT Peri-Urban **ENHANCE** Shoreline Wetlands and Drinking against sea level rise Water Reservoirs and erosion **RESTORE** Polluted and encroached Water **Bodies**

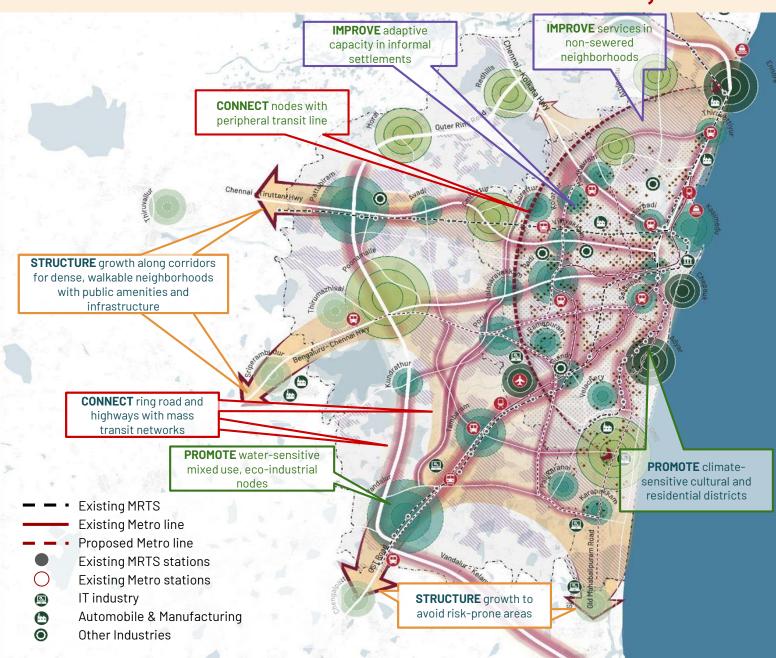
Stick notes on the map with your comments following the color code

R

Ε

C

METROPOLITAN SCALE: THIRD MASTERPLAN VISION, CMDA

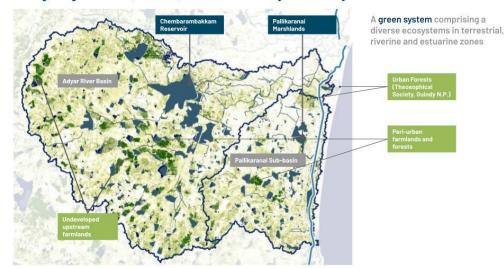

Resilient City Chennai

Where and how should Chennai prioritize the following urban development actions?

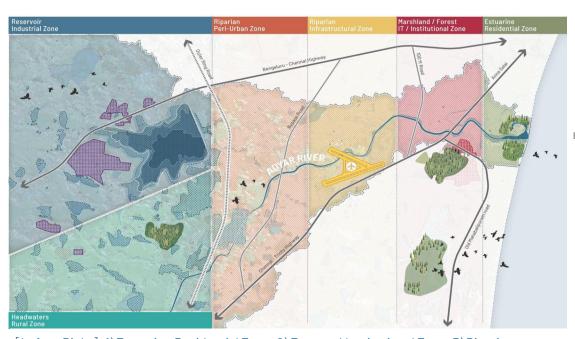
- STRUCTURE Urban expansion through risk-sensitive land use planning (S)
- **CONNECT** Transit-oriented Developments with sustainable mobility networks **(C)**
- **PROMOTE** Mixed-use economic nodes as climate-resilient cities **(P)**
- IMPROVE Service delivery and housing in vulnerable areas (I)

Stick notes on the map with your comments following the color code

THE POLICY & PRACTICE FORUM 2023

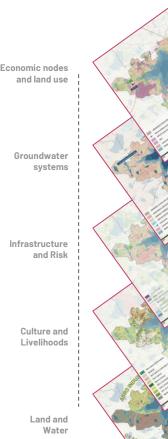

METROPOLITAN SCALE: ADYAR BASIN VISION

- Adyar basin is the southernmost of the three major river systems within Chennai city extents
- The riverine transect encompasses urban, peri-urban and rural contexts of the Chennai Metropolitan Area
- The Adyar Basin has the river as a major ecological corridor and three development corridors (ORR, GST Road, Bengaluru-Chennai highway)


Mapping Land-water Linkages in Adyar Basin Chembarambakkam Reservoir A hydrological system comprising a network of streams and catchment areas. Adyar River Basin Adyar River Estuary Buckingham Canal Low-lying floed prone areas part of OMR LT. Corridor

Recognizing Terrestrial, Riverine, and Estuarine Ecosystems in Adyar Basin

METROPOLITAN SCALE: ADYAR BASIN VISION



[Left to Right]: 1) Estuarine Residential Zone, 2) Forested Institutional Zone, 3) Riparian Infrastructural Zone, 4) Riparian Peri-urban Zone, 5) Reservoir Industrial Zone, 6) Headwaters Rural Zone

METROPOLITAN SCALE: ADYAR BASIN VISION

NEIGHBORHOOD SCALE: SPONGE CITY FRAMEWORK

SPONGE CITY FEASIBILITY AND PILOT PROJECT

Detailed Feasibility and Project Report for Blue-green Infrastructure

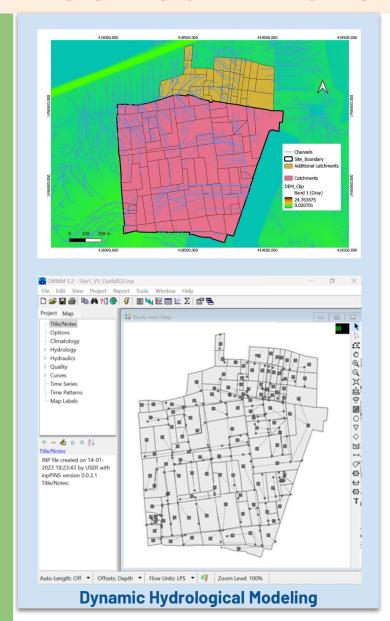
COLLABORATORS

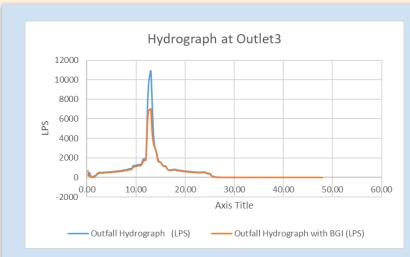
CARE Earth, IIT Madras, EVOLVE Engineering

CLIENTS
Royal HaskoningDHV for GCC

- Land Cover Mapping and Street Surveys
 - Using GIS, CAD, field visit and reconnaissance to accurately represent land cover, street widths and feasibility of blue-green infrastructure

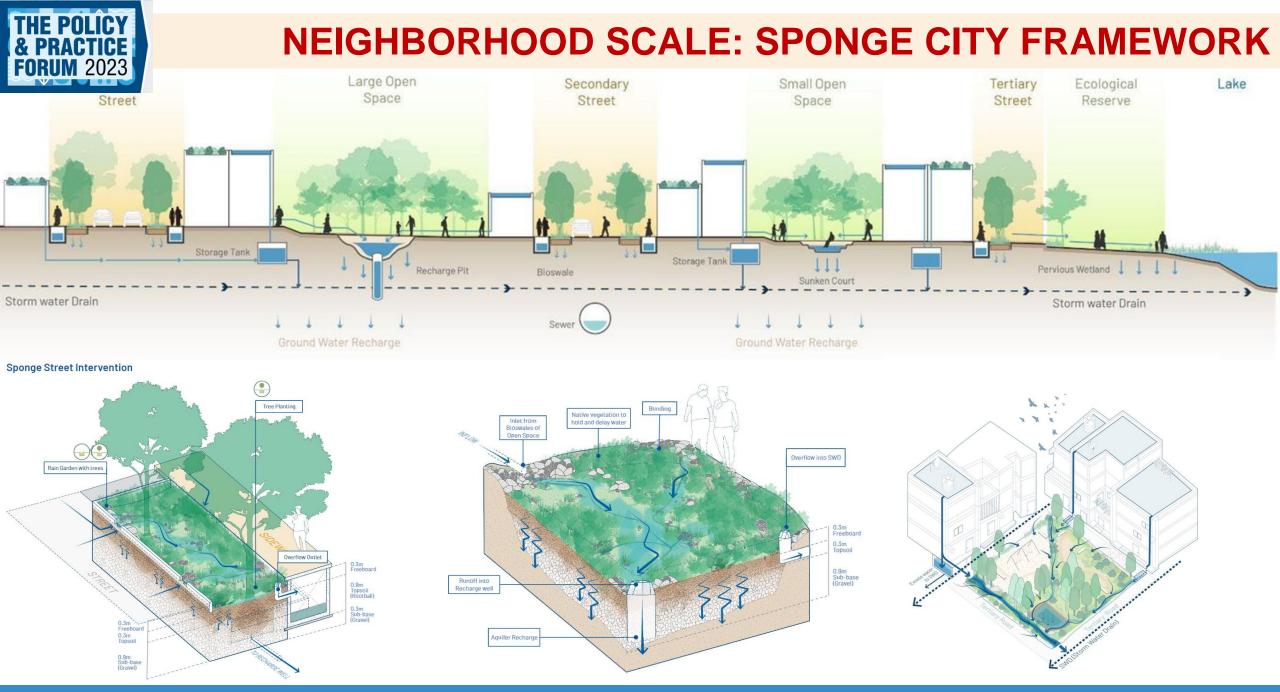
- Siting Sponge Street and Open Space Interventions
 - Designing blue-green infrastructure for streets and open spaces based on spatial, land-use, and hydrological opportunities



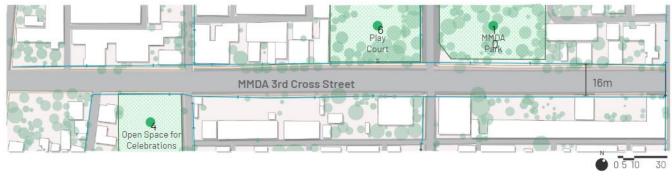

NEIGHBORHOOD SCALE: SPONGE CITY FRAMEWORK

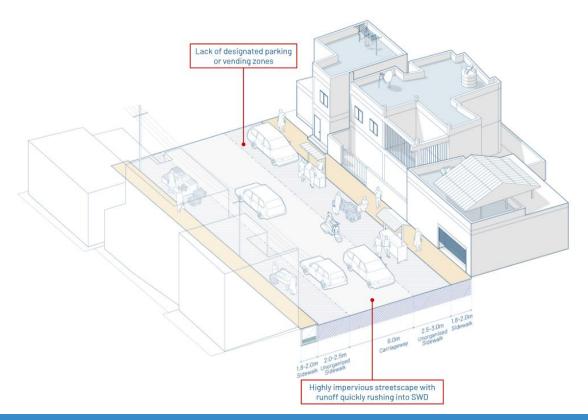
Quantifying Impact of Sponge Network on Flood Mitigation and Aquifer Recharge

 Evaluating the impact of proposed blue-green infrastructure network on runoff volume reduction and infiltration increase for specific storm return periods

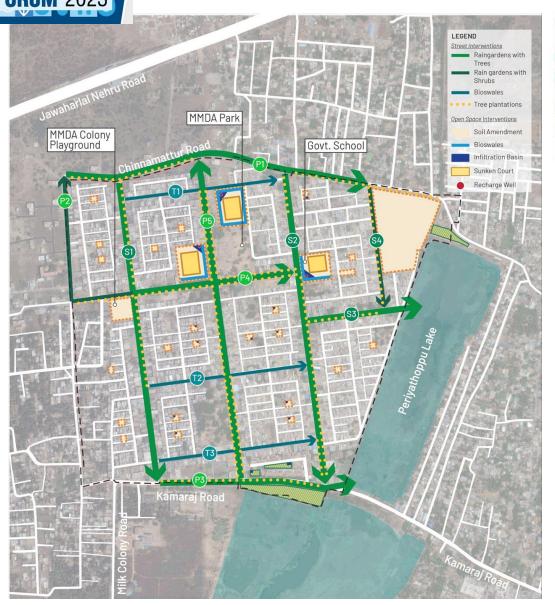

1			Impervious		Pervious					and the same	Interventions			
2	Runoff Coeff.	0.95	0.95	0.95	0.05	0.05	0.25	0.25	0.55	0.55	0.05	0.05	0.05	
3 # (atchment Area (m2)	Roads	Sidewalk+SWD	Buildings	Trees_05	Veg_OS	Trees_Street	Veg_Street	Soil_Roads	Bare Soil / Dirt	New_Trees	Ex_Trees	RG, BS, Soil	PCT_INT
4 CA-1574	8532.399487	599.905073	0	0	1816.74063	901.291134	66.771215	0	553.932042	2586.216784	1854.8199	0	152.72274	23.528
5 CA-1575	10160.12298	1016.34045	78.652531	1756.40436	1730.88458	590.326523	105.129571	88.0857	0	4334.170347	380.90469	0	79.224229	4.5287
6 CA-2796	7693.271883	918.592937	129.346291	2722.78722	748.264871	299.710784	48.037574	193.98255	0	2557.104648	13.466747	0	61.978266	0.9806
7 CA-2797	6604.013246	1044.99661	118.742608	3361.88242	203.738222	66.852016	230.77705	4.938276	0	1282.307634	191.31236	0	98.466052	4.3879
8 CA-2799	4582,606565	640.479094	0	2455.3811	146.121496	5.263822		12.55103	0	1172,605865	127,2345	0	22.96965	3,2777
9 CA-2800	3308.203532	475.768052	0	1946.16809	39.407072	61.468299		0	0	785.392019	0	0	0	
IO CA-2801	13164.26954	0	131.426495	7103.73393	460.201808	350.453445	286.103163	3.137757	0	4420.24246	354.69821	43.87467	10.397599	3.1066
11 CA-2807	7358,202809	659.112906	120,7388	1202.00048	634,900306	0		0	0	4647.528433	1.850082	0	92.071806	1,2764
2 CA-2808	5792.314882	1093.7564	323,385398	1765.07949	909.171261	100.647173	44.560025	0	0	1442.019757	2.647352	0	111.04802	1.9628
3 CA-2809	28436.86589	881.101127	223.598958	6676.32819	6789.35186	1589.00641	282.059061	97.881192	106.208019	10122.95048	1289.3362	120,4949	258.54949	5,8669
4 CA-2811	6609.084253	1013.87585	143.581502	2261.88483	612.079041	205.534187	501.18278	63,648359	58.74179	1418.00965	254.34481	23.02511	53.17635	5.0013
5 CA-2825	10771,69844	0	0	4594.30945	862,258122	0	694.314375	0	1.816864	3986.762677	243.56622	136,7089	251,96179	5,8694
6 CA-2827	4612,778474	0	46.546396	2335.4096	16.766658	17.076488	516,666364	14.094959	0	1339.335299	297.63147	0	29.251244	7.086
7 CA-2828	4239.208639	771.562478	1.299758	2440.37196	293,741873	32,306254	199.959778	0	0	491.668342	4.037015	0	4.261181	0.1957
8 CA-2829	4891.021698	776 167523	55.88725	1789.90724	3 839836	182 039354	326,126985	0	0	1183,69009	525,42383	0	47,9396	11.722
9 CA-2833	8020.028226		46.41015	0	378.826894	606.180173			0		512,43077	0		
O CA-2834	35968,77402		262.084047	3877.39712	3563,72567	4540.65323			0		1180.924	0		
1 CM-1100	3737.358439	335.801692	53.582322	1018.91481	244.002029	48.632343	558.318986	0	0	1473.199472	4.906787	0	0	0.131
2 CM-1101	5517,789737	305.834799	0	2459.68098	1044.56429	223.673018	50.365131	9.342886	0	1424.32863	0	0	0	
3 CM-1102	6349.527462	0	45 992876	3112,99334	0	32,910311	366.457721	11.185062	51.06849	2197,703781	531,21588	0	0	8,3662
4 CM-1103	8733.184973	1407.45628	0	5535.32116	352.07938	18,470305	398.928162	21.467805	0	748.25522	127,2345	0	123.97216	2.8764
5 CM-1104	9877.3838	0		5097.39536	369,59387	92,346381			85,303772		0	0	0	No.
6 CM-1105	8282,727731	458.914636	0	3311.645		112,909786			0		0	0	0	
7 CM-1106	11013.16962		134.288339	6013.59451	400.588792	186.408375			85.412842	1681.20343	445.32076	0	19.314423	4.2189
8 CM-1107	12939.93776	3028.67099	0	4077.8995	1425.18535	147.469928	337.246145	55.515779	0	3741.534321	66.578305	0	59.837439	
9 CM-1108	12098.50148	1429.35683	21,40803	3836.82789	2734 20017	512.538887	160.433663	0.308954	0	3402.927062	0	0	0	
0 CM-1109		569.819143	66.143059	1110.2328		25,978934			34.035685	1078.113627	911.98188	0	2392,4027	48 586
1 CM-1110	6160,519496	420.253153	84,950172	1929.78967	282,640239	34,414161	79.851662	8.259548	6.493024	3088,991284	151,75571	32,65865	40.462226	3,6502
32 CM-1111	12144.18206			8554.43043	434.804775			43.844825	0		63.617252	0		
3 CM-1112	10445.32131				686 179074	62.32627			0		0	0	13.639473	
14 CM-1113	13095,70853	1420.04981	132.089279	7920.45316	869.718714	119.929594	495.487191	14.722311	16.200979	1733.967827	270.94139	0	102.14828	2,8489
5 CM-1114		926.882761	79.085387	2039.27377	36.397698	0			1.785146	1367.084885	194.88944	0		
6 CM-1115	6742,731419				1529.16959	76,789514			0		0	0		
7 CM-1116	17765.93894		5.842576	11378.6823		28.607254					0	0	108.1425	
8 CM-1117	7254.647032		135.887842		247,638107		348,59263		221,728726		454 94811	0	173,5106	
9 CM-1118	19364.33109				2572.19958		399.00433				17.443579	0		
10 CM-1119	9029.492457			2970.61926	744.679172	189.516862	43.527088	0	235.511284	2446.27975			109.72209	12.545

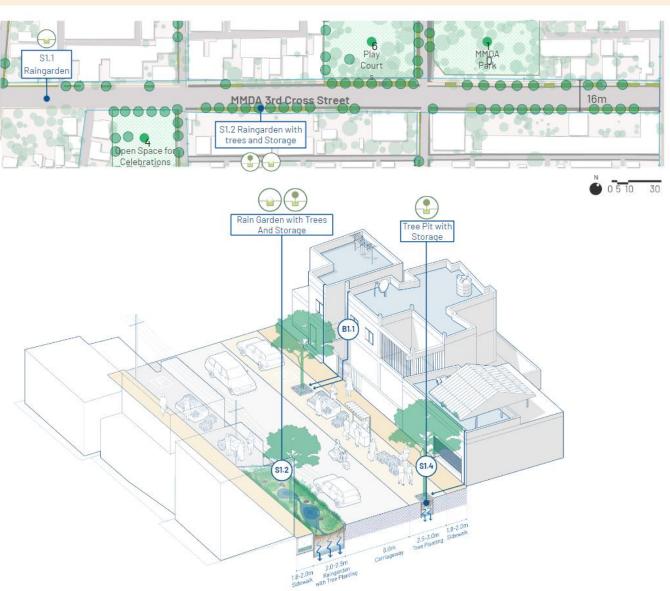
	Without LID)	With LID									
Subcatch ID	Area	Total Infiltration in	Subcatch ID	Area	Total Infiltration in million litre through native soil	Infiltration final	Infiltration initial soil	Soil storage in milllion litre	Tota Infiltration In million litro			
1	0.7676	0.42	SC_68	0.38	0.08	470.08	32.62	1.64	1.7			
2	0,6674	0.53	SC 59	0.17	0.04	844,60		1.38	1.4			
3	0.4583	0.57	SC 58	0.26	0.05	822.25	32.62	2.04	2.0			
4	0.3308	0.24	RG 9	0.00	0.04	0.00		0.00	0.0			
5	1.3156	0.73	RG 8	0.08	0.33	0.00	0.00	0.00	0.3			
6	0.736	1.03	RG_74	0.04	0.24	270.00	90.75	0.07	0.3			
7	0.5748	0.78	RG_73	0.00	0.02	270.00		0.00	0.0			
8	2.9821	5.10	RG 70	0.00	0.04	270.00		0.01	0.0			
9	0.6748	0.37	RG_69	0.03	0.07	270.00	90.75	0.06	0.1			
10	1.1314	0.62	RG 68	0.00	0.00	270.00	90.75	0.01	0.0			
11	0.4683	0.26	RG_62	0.03	0.38	270.00	90.75	0.04	0.4			
12	0.4479	0.29	RG_61	0.11	1.24	270.00	90.75	0.20	1.4			
13	0.5481	0.30	RG_58	0.05	0.07	270.00	90.75	0.09	0.1			
14	0.8013	2.12	RG_52	0.09	0.32	270.00	90.75	0.16	0.4			
15	3.6849	10.50	RG_50	0.03	0.46	90.00	79.66	0.00	0.4			
16	0.8413	2.15	RG_5	0.01	0.02	0.00	0.00	0.00	0.0			
17	1.0428	1.88	RG_48	0.01	0.13	270.00	90.75	0.02	0.1			
18	0.2872	0.16	RG_47	0.01	0.09	270.00	90.75	0.01	0.1			
19	0.5613	0.31	RG_44	0.01	0.21	270.00	90.75	0.02	0.2			
20	0.6242	0.34	RG_43	0.03	0.35	270.00	90.75	0.05	0.4			
21	0.8594	0.48	RG_41	0.02	0.36	270.00	90.75	0.04	0.4			
22	0.9984	0.55	RG_39	0.03	0.48	270.00	90.75	0.05	0.5			
23	0.7982	0.44	RG_38	0.01	0.10	270.00	90.75	0.01	0.1			
24	1.1005	0.84	RG_37	0.03	0.34	270.00	90.75	0.05	0.3			
25	1.3037	0.72	RG_36	0.09	0.53	0.00	0.00	0.00	0.5			
26	1.2096	1.16	RG_35	0.03	0.27	0.00	0.00	0.00	0.2			
27	0.681	1.38	RG_34	0.02	0.11	0.00	0.00	0.00	0.1			
28	0.6334	0.35	RG_31	0.04	0.21	0.00	0.00	0.00	0.2			
29	1.1799	0.62	RG_28	0.00	0.03	0.00	0.00	0.00	0.0			
30	1.0285	0.74	RG_27	0.01	0.07	0.00	0.00	0.00	0.0			
31	1.40044	1.07	RG_24	0.04	0.43	0.00	0.00	0.00	0.4			
32	0.5616	0.52	RG_22	0.00	0.05	0.00	0.00	0.00	0.0			


Simulation results from 5, 10, 25 year R.P storms with and without blue-green infrastructure



NEIGHBORHOOD SCALE: SPONGE CITY FRAMEWORK





THE POLICY & PRACTICE FORUM 2023

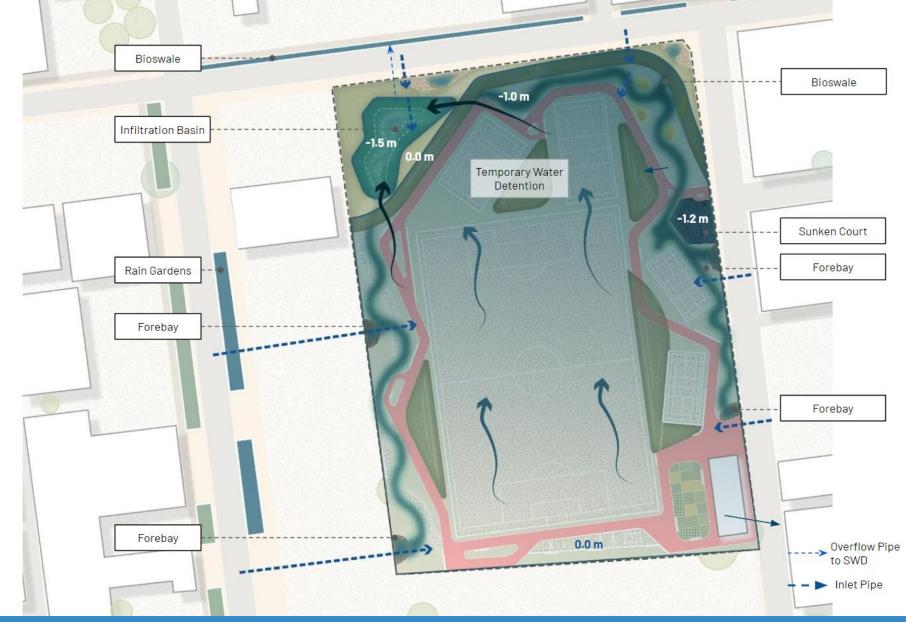
NEIGHBORHOOD SCALE: SPONGE CITY FRAMEWORK

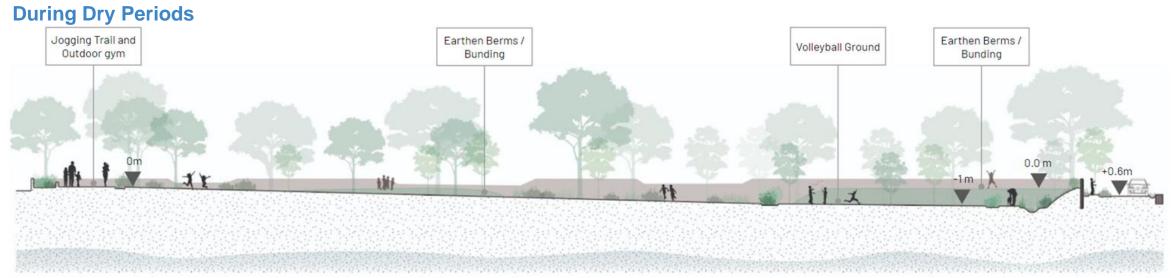
Neighbourhood Commons for Vibrant Social Life

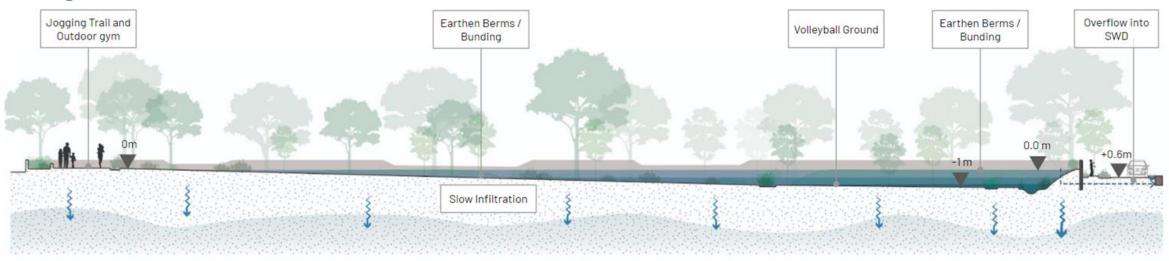
Green Park for Healthy Living

Infrastructure to Reduce Flooding and Raise Aquifers

Habitat for Flora and Fauna

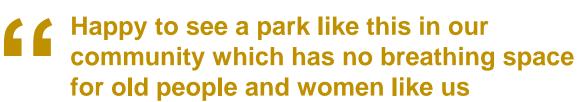

Infiltration Basin





During Storms

Section 1-1



-Elderly man & Woman from the RWA

DT த்துர் எம்.எம்.டி.ஏ ஸ்பான்ப் பக்கா

Pignate wait
(Fasture Wald)

Pignate y Lake and (Challen Pay Java)
(Ch

LEARNINGS SO FAR...

- **Compelling visuals and storytelling** can be a powerful political tool to communicate risks and cobenefits of bundling nature-based solutions into infrastructure delivery
- Integration of high-level visions with strategic pilot projects that touch upon multiple priority areas are necessary for key stakeholders
- Integrating spatial and non-spatial approaches: Policymakers, planners, urban designers and engineers need to collaborate to integrate guidelines, plans, and infrastructure projects
- Institutional Reform: Design Manuals and Standards at National Level (CPHEEO), Regulations and Bylaws at Local Level
- Capacity Building: Updating Engineering Curriculum at National Level, Training for Municipal Engineers and Maintenance Personnel at Local Level
- Inter-governmental and multi-scalar Coordination: of blue-green infrastructure strategies and investments at metropolitan, municipal, and ward levels. Inter-departmental Coordination: for the integration of multiple systems for implementation and maintenance of blue-green infrastructure.
- **Procurement Reform:** Prohibitive qualifications for Municipal and Multilateral procurement for innovative firms in blue-green space competing against firms with decades of gray infrastructure experience.
- **Green-Blue Financing:** Unlocking new finance models including blended finance, public-private collaborations to finance the planning, design, implementation and maintenance of blue-green infrastructure

Thank you!

Manushi Ashok Jain

Co-founder & Director (Business Development, Operations and Design)
Sponge Collaborative | Chennai, Bengaluru & Lyon, France

Email: manushi@spongecollaborative.com