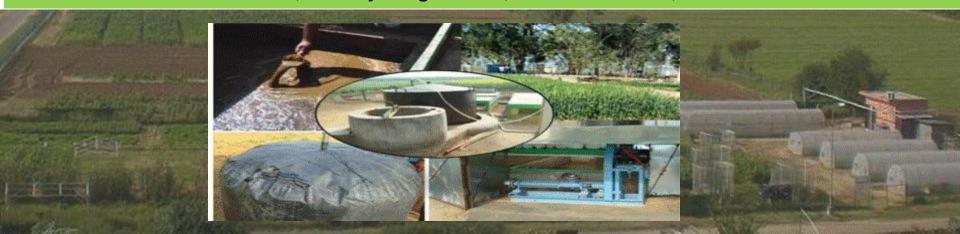


Rural and Urban Biodegradable Waste – Challenges, Opportunities & Strategies for Resource Recovery

Navindu Gupta


Principal Scientist and Principal Investigator

DDWS Project on Bio-slurry management under Gobardhan

Division of Environmental Sciences, ICAR-IARI,

DARE, Ministry of Agriculture, New Delhi-110012, India

Rural Sanitation (ODF)

State of Art

- ODF under SBM (Gramin)
- Vacating of the septic tank
- Collection and Transportation of Septage / Faecal Sludge
- Composting
- Application

Microbial organism and pathogen in Faecal Sludge

Microbial Species	Population load (approx.)
E.coli	1.3×10^6 - 4.7×10^7 CFU/100 ml
Helminths	1- 20 eggs/100 ml
Salmonella sp.	1.5*10 ⁶ CFU/100 ml
Hookworm	1-15 eggs/100 ml
Ascaris	1-12 eggs/100 ml
S. haematobium	1- 6 eggs/100 ml
Faecal coliform	$1.5 \times 10^6 - 4.6 \times 10^7 \text{CFU/} 100$ ml
S. mansoni	1-10 eggs/100 ml

https://doi.org/10.2166/wpt.2015.014

Dumping field

BIOMASS

Biomass is a contemporary plant matter which is continually being replenished by the photosynthetic conversion of CO₂ and water by the solar energy (Ragauskas *et al.*, 2010).

Biomass Materials

•	Grains,	fruits,	Vegetables
---	---------	---------	------------

- Agricultural crop residues
- Fuel wood & forestry wastes
- Agro-Industrial wastes
- Biodegradable municipal waste
- Animal dung and Poultry droppings

Biomass Characteristics

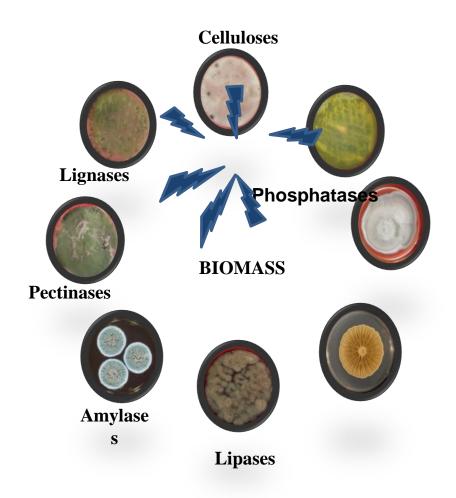
•	Carbon	40-50 %
•	Hydrogen	5-6 %
•	Oxygen	40-50 %
•	Cellulose	30-45 %
•	Hemi-cellulose	20-35%
•	Lignin	25-40%
Hea	ting Value	
•	lower	14-18 MJ/kg
•	Higher	15-20 MJ/kg

Rice Straw Burning

Farmers' fields stubble burning

Current Science

• emission of trace gases like CH₄, CO, N₂O, NO_X, SO₂, hydrocarbons and particles of organic and inorganic sp.


- 1 tonne of straw burning releases 3 kg particulate matter, 60 kg CO, 1460 kg CO₂, 199 kg Ash, 2 kg SO₂ (Jenkins and Bhatnagar, 2003)
- Adverse impact on health of human beings (eyes, asthma, respiratory diseases, cough and cold)

The Opportunity ... Why Compost

Great potential to blend organic wastes and compost them collectively, thereby producing a beneficial product

- Compost contains agriculturally important nutrients
- Could result in potential cost savings in handling high moisture or high volume materials that are generated 365 days per year
- Provides means for IARI to reduce it's environmental footprint by recycling

Role of Fungi For Rapid Degradation of Substrates

In-situ decomposition of Paddy straw using Pusa Decomposer:

Ex-situ Composting variants

Biogas storability in Balloon

Analytical facts of the Biogas from the admixture of cattle dung and biomass

Property	CH ₄	CO ₂	H_2S	H_2	Biogas
0/1 1	E 4.00	20.45	440	0.040	400
% by volume	54-80	20-45	1/10	0.0-10	100
Energy value (kcal L-1)	9.0			2.9	5.4
Density (g L-1) 25°C 760 mm	0.72	1.98	1.54	0.99	1.22
Specific gravity (relative to air)	0.55	1.5	1.2	0.07	0.93
Critical temperature (°C)	82.5	+31.1	+100.4	239.9	
Critical pressure (Atm.)	45.8	73.0	88.9	12.8	
Odour	None	None	Rotten egg	None	

Bioslurry utilization in agricultural & ornamental crops

Cost-Benefit analysis of the 1 m³ biogas plant

There are two products of the biogas plant

- (1) Biogas and (2) Biogas slurry
- Biogas yield: 0.92 m³ methane content (55% of 0.92) = 0.506 m³ d⁻¹

(Equivalent to 1.2 cylinder (LPG cylinder size=14.5 Kg isobutane) per month)

the cost-INR 750/- per cylinder (1.2 x 750 x12) = INR 10800 pa

 Biogas slurry (wet) : 15 L per day per m3 biogas plant (15 x 365 days) = 5475 L

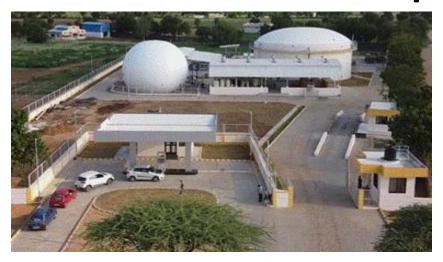
CBG production potential

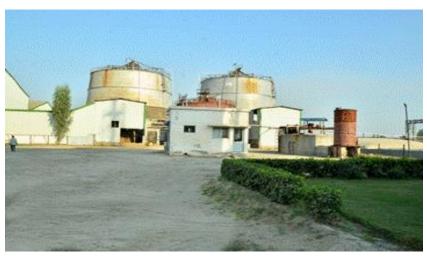
- **❖ Total CBG Potential: 62 MMT**
- **❖ Bio-manure/FOM Production potential: 370 MMT**
- **❖ FOM productivity/ quality/ composition depends on feedstock**

SI.No	Parameters	FOM
1	Moisture % by weight, maximum	30-40%
2	NPK Nutrients- Total N, P ₂ O ₅ and K2O nutrient should not be less than	1.2%
3	Total Organic Carbon(minimum)	14%
4	C:N Ratio	<20
5	Practical Size	Minimum 90% material should pass through 4.0 mm IS Sieve
6	рН	6.5-8.0
7	Pathogens	NIL
8	Conductivity (as dSm ⁻¹) not more than	4
9	Heavy metal content, (as mg/kg),maximum	
10	Arsenic as (As ₂ O ₃)	10.0
11	Cadmium (as Cd)	5.0
12	Copper (as Cu)	50.0
13	Chromium (as Cr)	300.0
14	Mercury (as Hg)	0.15
15	Nickel (as Ni)	50.0
16	Lead (as Pb)	100.0
17	Zinc (as Zn)	1000.0

FUTURE WITH BIOENERGY

- More than 1000MW of energy could be generated from 'waste' biomass in Punjab only using highly-efficient, modern bio energy systems.
- Sufficient for the energy needs of some 8 to 16 million people.
- It could prove to be a cost-effective option. Liquid and gaseous fuel production from renewable sources and usage in rural areas could be Rs. 20-30,000-crore/year industry and can bring substantial wealth to these areas.
- Positively impact "energy conservation, social hygiene, employment generation and women's health.
- Biomass can beat oil and coal.
- Energy self-sufficiency to villages.
- For plants to be introduced on large scale in villages it is necessary to set up a National mission on electricity production for rural areas.

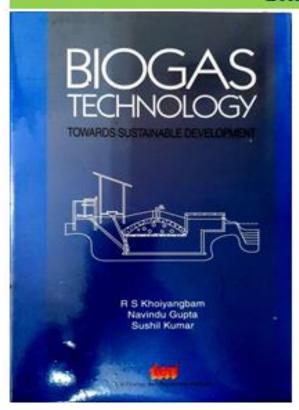

Banaskantha

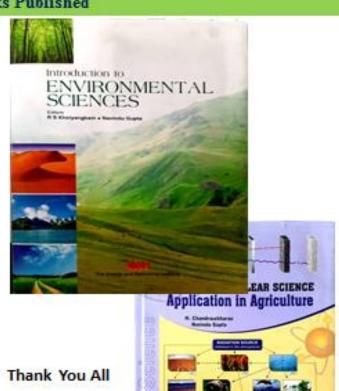


CBG plants

Banas CBG-Gujrat

Surat CBG-Gujrat


Lehragaga- CBG-Punjab


Fazlika-CBG-Punjab

Namakkal CBG-Tamil Nadu

Books Published

