

Overview on brick kiln: pollution, technology and where we need to go?

Centre for Science and Environment

March 11, 2015

'Under-construction' agenda

- Massive "Under-Construction" agenda for countries of the south.
- 70 percent of India is yet to be built.
- Homes, offices and factories require large quantities of building material.
- Cheapest building material so far has been BRICKS!
- Standard practice
 - Dig clay/mud from the field
 - Mould them into bricks
 - Fire them in inefficient furnaces using different fuel source
- •Kilns operate from China to Peru, burning anything cheap.

Global brick production: 1.5 trillion bricks/annum

Country	Production %	No. Billion P.A.	
China	66.67%	1,000	
India	13.33%	200	
Pakistan	3.00%	45	
Vietnam	1.67%	25	
Bangladesh	1.13%	17	
Nepal	0.40%	6	
Rest of Asia	0.47%	7	
Total Asia	86.67%	1,300	
USA	0.53%	8	
UK	0.37%	4	
Australia	0.13%	2	
Rest of World	12.40%	186	
Total Rest of World	13.33%	200	
Total World Production	100.00%	1,500	

Resource intensive sector

- Major fuel: Coal, firewood, heavy oil
- Coal Consumption by Asian Brick Kilns 110 million tonnes/ year
- Highest consumer China (50 million tonnes/year)
- Kilns have huge variation in efficiency
- Coal consumption varies between 11-70 tonnes coal per 100,000 bricks.
- Clay consumption:
 - China: 1 billion m³
 - India: 350 million tonnes
 - Bangladesh: 45 million tonnes

Brick sector in India

- Second largest producer India (200 billion bricks/year).
- 65% of these made by burning fertile alluvial Indo-Gangetic plains.

FCBTK	6500 (N), 17000 (E), 400 (C) 7500 (W) and 1000 (S)
Zigzag	15 (E)
High Draft	50 (N), 2000 (E)
Hoffman	500 (S)

- Huge environmental cost associated with this BM:
 - Black carbon emissions
 - Local air pollution
 - Loss of fertile top soil
- Black carbon emissions: as high as 9% of the India's annual black carbon emission total.

Brick sector in India: Labor issues

- Employs 10 million laborers: unacceptable working conditions
 - Migratory workers
 - Seasonal employment
 - Wages on the basis of number of bricks produced
 - Occupational hazards no PPE
 - Child labor
 - Non-implementation of Factories Act provision

Technology: Varied & Outdated!

ANIL GARWAL

Technology vs workforce

11								
AL	Country	Type of Kiln	No. of Kiln	No. of Bricks Produced (in billion/year)	No. of People employed	No. of Bricks produced per employee		
15	China	Hoffman Kiln & Tunnel Kiln	80,000	1,000	5 million	200,000		
	India	FCBTKs, Clamp	>100,0 00	200	10 million	20,000		
	Pakistan	Clamps & MCBTKs	12,000	45	9 million	5,000		
	Vietnam	Tunnel & VSBKs	10,000	25	-			
	Bangladesh	FCBTKs, zigzag	8,000	17	1 million	17,000		
	Nepal	Clamps & BTKs	700	6	140,000	42,857		

Technology: Varied & Outdated!

- Clamp technology is equally polluting but without the initial setting up cost (due to no fixed structure).
- That also makes regulation enforcement difficult for these moveable kiln.
- Zigzag kilns are better than FCBTK.
- Air travels in a zigzag path resulting in the reduction of pollutants and black carbon, and is more energy efficient.
- PM emissons: FCBTK 250 to 1250 mg/Nm3
 Zigzag Less than 250 mg/Nm3

Energy efficient technology

- Vertical Shaft Brick Kiln is even a better technology.
- Tunnel Kiln is much more expensive to set up but requires less man power compared to FCBTK & Zigzag.
- Best technology available so far for large scale production for brick production in industrialized country.
- The advantages of using Tunnel Kiln are:
 - It can fire a wide variety of products.
 - Good control over the firing process.
 - Ease of mechanization, thus reducing the labor requirement.
 - Has large production volume.

Technology comparison

Anil Agarwal Dialogue Issues

- How should the local environment and livelihood costs of brick kilns inform national-global policy?
- What are the best practices in regulations and enforcement for brick kilns in different countries?
 What is working and what can be done?
- What is the technology roadmap for efficient and clean brick kiln manufacturing in the world? What can countries learn from experiences on the ground?
- Is improvement in technology enough or should the world move towards alternative materials for building?
- How will alternative material be affordable and sustainable?

