Worldwide Progress in Vehicle Technology and Emissions Norms
Leaders and Laggards Need To Move Fast

March 11, 2015

Michael P. Walsh
International Consultant

Founding Chairman
Board of Directors,
International Council on Clean Transportation
Automobiles and the Environment

- Global Environment
- Urban Environment
- Emissions: CO₂, BC, O₃, VOC, NOₓ, PM
- Alternative Fuels
- Energy Security
- Convenience
- Recycle
- Economy
- Safety
Historical High Growth Has Resulted In Vehicles Being Important Contributor To Local, Regional and Global Pollution

Figure: World Motor Vehicle Population

- Motorcycles
- Commercial Vehicles
- Cars

Calendar Year

Millions

0 500 1000 1500
Figure: Annual Production of Cars, Trucks and Buses

R squared = 0.886
EPA Emissions Standards for Diesel Trucks

PM (g/hp-hr) vs. NOx (g/hp-hr)

- 2007-2010
- 1990
- 1991
- 1994
- 1998
- 1991
- 1988
- unregulated
U.S. and Euro Light-Duty Vehicle Emission Standards

Note: U.S. Tier 2, Bin 5 is equivalent to CARB LEV II - LEV

- Gasoline NOx
- Diesel NOx
- Diesel PM X 10

mg/km

50 ppm S cap

Euro 4
- 2005: 80
- 2009: 250
- 2014: 250

Euro 5
- 2009: 60
- 2014: 180

Euro 6
- 2009: 60
- 2014: 80

U.S. Tier 2, Bin 5
- 2009: 45
- 2014: 43

EPA/CARB
- 2009: 43
- 2014: 62

Euro 5+ (2011) and 6 include 6×10^{11}/km diesel particle number limit;
Euro 6c includes PN limit for GDI
U.S. and Europe: Heavy-Duty Primary Exhaust Emission Control Technologies

- **2005, 2008, 2013**
- **g/kWh**
- **50 ppm S cap**
- **10 ppm S cap**
- **15 ppm S cap**

Graph Details:
- **Y-axis:** g/kWh
- **X-axis:** European and US standards
- **Technologies:**
 - SCR
 - SCR (EGR+DOC options also)
 - EGR + DOC + DPF + SCR
 - EGR + DOC + DPF

Legend:
- **Yellow bar:** Diesel NOx
- **Red bar:** Diesel PM X 100
Diesel Particulate Filters (DPFs)

- Wall flow ceramic filter element with high capture efficiency for particulates over a broad size range (cordierite or SiC filter elements)
- Captured soot needs to be burned off (regenerated) at regular intervals to manage backpressure on engine
- Commercialized on light-duty diesels in Europe in 2000, on US LDD starting in 2006; standard on US 2007+ trucks/buses, on 2013+ Euro VI trucks/buses – 10s of millions in-use worldwide
- Capture soot and inorganic-based particles associated with engine wear, lubricant consumption: regular maintenance required (filter cleaning)
Distribution of Controls
Light Duty Diesel Vehicles

2015
- Engine Mods: 2.2%
- Tier 2: 8.6%
- Euro 2: 1.6%
- Euro 4: 15.7%
- Euro 5: 15.1%
- Euro 6: 56.8%

2025
- Engine Mods: 3.7%
- LEV3: 8.8%
- Euro 4: 5.0%
- Euro 5: 3.4%
- Euro 6: 79.1%

2030
- LEV3: 8.0%
- Engine Mods: 3.4%
- Euro 4: 2.7%
- Euro 6: 85.9%
Distribution of Controls
Heavy Duty Diesel Vehicles

2,015
- US10: 12.3%
- Euro 6: 12.6%
- Euro 5: 5.0%
- Euro 4: 48.2%
- Eng Mods: 11.8%

2,025
- US10: 9.2%
- Euro 6: 9.5%
- Euro 5: 3.1%
- Euro 4: 9.5%
- Eng Mods: 13.9%

2,030
- US10: 12.0%
- Euro 4: 8.4%
- Euro 6: 70.7%
- Eng Mods: 8.9%
Diesel Engine Compliance Program

- **Engine Design and Build**
 - Manufacturer Prototype and Durability Testing

- **EPA Action**
 - EPA Issues Certificate of Conformity
 - EPA Confirmatory Testing
 - EPA Review of Manufacturer Application

- **Manufacturer Action**
 - Engine May Enter Commerce

- **Full Useful Life**: On-highway: up to 10 years / 435,000 miles
 - Nonroad: up to 10 years / 8,000 hours
 - Marine: up to 10 years / 20,000 hours
 - Locomotive: up to 10 years / 32,000 MW-hours
Clean Diesel Vehicles Include Sophisticated Sensors and Diagnostics

- Combined O_2/NOx Sensor
- Ammonia Sensor
- Soot Sensor
- Urea Quality Sensor
- Diagnostic Systems
- Heated Urea Tanks
U.S. 2007 HD Emission Performance Provides Significant Reductions in PM, CO, Air Toxic HCs

<table>
<thead>
<tr>
<th>Compounds</th>
<th>% Lower Than 2004 Engine Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16-Hour Cycle</td>
</tr>
<tr>
<td>Single Ring Aromatics</td>
<td>82%</td>
</tr>
<tr>
<td>PAH</td>
<td>79%</td>
</tr>
<tr>
<td>Nitro-PAH</td>
<td>81%</td>
</tr>
<tr>
<td>Alkanes</td>
<td>85%</td>
</tr>
<tr>
<td>Polar</td>
<td>81%</td>
</tr>
<tr>
<td>Hopanes/Steranes</td>
<td>99%</td>
</tr>
<tr>
<td>Carbonyls</td>
<td>98%</td>
</tr>
<tr>
<td>Inorganic Ions</td>
<td>38%</td>
</tr>
<tr>
<td>Metals and Elements</td>
<td>98%</td>
</tr>
<tr>
<td>Organic Carbon</td>
<td>96%</td>
</tr>
<tr>
<td>Elemental Carbon</td>
<td>99%</td>
</tr>
<tr>
<td>Dioxins/Furans(^a)</td>
<td>99%</td>
</tr>
</tbody>
</table>

\(^a\) Average value between 2007 and 2009, with full enforcement in 2010 at 0.20 g/hp-hr

Source: CRC Phase 1 ACES Report; 2010+ Engines Delivering Even Lower Toxic HC Emissions than 2007 Engines
Developments for Euro 1 – Euro 5

Fig. 4. Mean hot NOx emission factors of gasoline (left) and diesel (right) passenger cars and light commercial vehicles as a function of model year. Whiskers represent the 95% confidence interval over the mean. Added are the type approval limit values for Euro 1 to Euro 5 passenger cars over the homologation test cycle in force in the respective year. For conversion from limit values in g per km see SI (using measured fuel consumption rates from Hausberger (2010)). For color plot consult online version.

What About Trucks?
The problem: High off-cycle NOx emissions in urban applications

In-use PEMS testing of Euro IV and Euro V trucks in The Netherlands found emission well above standard in urban driving in 2008!

Source: Kleinebrahm 2008
California’s Low-Emission Vehicle Program

- Adopted in 2012
- Achieves 75% reduction in smog-forming pollution
- Achieves 90% reduction in PM standard

Particulate Matter Emission Limits (milligrams/mile)

- Current Standard: 10
- 2017-2022: 3
- 2025-2028: 1

NMOG + NOx (grams/mile)

Cars
Proposed Optional Low NOx Engine Emission Standards for MY 2015+

<table>
<thead>
<tr>
<th>NOx Level g/bhp-hr</th>
<th>% Below Current Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 (Current)</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>- 50%</td>
</tr>
<tr>
<td>0.05</td>
<td>- 75%</td>
</tr>
<tr>
<td>0.02</td>
<td>- 90%</td>
</tr>
</tbody>
</table>
Zeolite SCR Catalysts Developed for Mobile Source Applications with Broad Temperature Windows and Good Thermal Stability

Aged 650°C, 100 Hours; Tested at 100k SV

Cu Based SCR Improvements

SCR catalysts aged 50 hours at 700°C
Clean Diesel Technology Driven By a Decade of U.S. EPA Mobile Source Emission Regulations

Average Benefit:Cost = 20:1

Tier 2 Light-Duty
final rule 1999
fully phased in 2009
Diesels held to same standards as gasoline vehicles
Diesel sulfur now 15 ppm

Ocean-going Vessels
final rule 2009; IMO ECA in 2010
ECA: 1000 ppm Sulfur in 2015;
80% lower NOx by 2016

Heavy-Duty Highway
final rule 2000
Sulfur now 15 ppm
fully phased in 2007-2010

Locomotive / Marine Tier 4
final rule 2008
Sulfur now 15 ppm
fully phased in 2017

Nonroad Diesel Tier 4
final rule 2004
Sulfur now 15 ppm
fully phased in 2015
Significant On-Road Retrofit Experience, Off-Road Experience Growing

- >300,000 on-road DPF retrofits and >50,000 off-road DPF retrofits worldwide; > 100,000 DPF retrofits in the U.S.
- >1 million DOC retrofits worldwide
- Significant experience with retrofit technologies exists for on-road vehicles
 - School buses, transit buses, long- and short-haul trucks, refuse haulers, utility vehicles
- Retrofit experience is growing for many off-road applications
 - Construction equipment
 - Port vehicles/equipment
 - Marine engines and locomotives
 - Stationary internal combustion engines used for power generation
Technical Considerations for Successful Retrofit Projects

• Vehicle should be properly maintained before considering retrofit
• Application engineering – Matching the right technology to the specific piece of equipment and application
• Proper professional installation – Retrofits can be installed safely (visibility concerns addressed)
• On-vehicle monitors – Provide important user feedback on performance (don’t ignore warning lights)
• Maintenance – Vehicle/equipment and retrofit device require inspection and maintenance

Successful Retrofits Require a Cooperative Effort Between Fleet Owners, Operators, and Technology Providers
India covered a lot of ground from 2001-2010, but is falling behind now

- For 2/3 wheelers:
 - HC+NOx combined standards;
 - Poor durability
 - No evaporative emission standards

- For Light-Duty Vehicles:
 - Diesel car share has increased to 50% of new vehicle sales in FY 2012-2013
 - Euro IV diesels emit three times NOx and an order of magnitude higher PM emissions than Euro IV petrol
 - Little progress on refueling evaporative emissions

- For Commercial Vehicles and Buses:
 - BS IV limited to a few bus fleets, trucks still at BS III
Auto Fuels Policy Committee
Vision

• Fuels Road Map
 • BS IV Fuels (50 PPM) Phased in Across Entire Country by 1 April 2017
 • BS V Fuels (10 PPM) Phased in Across Entire Country by 1 April 2020

• Vehicle Emissions Road Map
 • BS IV Nationwide in 2017
 • BS V for New Models from 1 April 2020 and all Models by March 31 2021
 • BS VI Four Years after BS V (1 April 2024)
Our Recommendations

• Enhance and then Adopt Recommendations From Committee on Auto Fuel Vision and Policy
 – Skip Euro 5/V and go directly to Euro 6/VI
 – Add ORVR and Zero Evaporative Emissions.

• Replace current test cycles with world-harmonized test cycles for all vehicle types.

• Ministry of Petroleum and Natural Gas should establish national fuel testing program at retail outlets

• Ministry of Road Transport and Highways should establish national in-use vehicle testing
Advantages of Euro 6/VI Over Euro 5/V

• Tighter Standards
• New and Improved Test Procedures Provide More Comprehensive Coverage of Range of Real World Driving Conditions
• Actual In Use Focus (RDE)
• Improved Onboard Diagnostics
• Likely Gasoline Particle Filter
Thank You