With 8 per cent of India’s total land area, the northeast region accounts for 3.8 per cent of the country’s population. According to the Union Ministry of New and Renewable Energy (MNRE), the region has a renewable energy (RE) potential of 129 GW. This potential can play a crucial role in fulfilling India’s Nationally Determined Contribution (NDC) targets for stopping climate change, one of which is generation of 50 per cent of the country’s total electricity from renewable energy sources by 2030.

Despite the potential, actual utilisation of RE in the region is less than 4 per cent, and the per capita energy consumption in the region is the lowest in the country (488 kWh in 2021), amounting to one-third of the national average. Seven of the 10 bottom-ranked states in India with respect to per capita consumption of electricity are from the northeast – resembling some of the countries in Africa in terms of acute energy poverty. Such a dismal scenario calls for urgent action towards developing climate-resilient programmes with RE playing a vital role.

Tapping into the region’s RE potential would be the solution. The utilisation of RE resources through advanced technologies including bioenergy, solar, wind, small hydro and others can play a crucial role in reducing energy poverty in this area through access to clean energy. This approach would not only reduce greenhouse gas emissions, but also contribute to the region’s energy supply, generate income for rural communities, and enhance the flexibility of the energy system, thereby bolstering the resilience of local societies.

Centre for Science and Environment (CSE) and the MNRE’s Association of Renewable Energy Agencies of States (AREAS) invite stakeholders to a one-day national seminar titled Promotion of Clean Energy Access in Northeast India. The seminar aims to shed light on the technologies, policies and challenges involved in transitioning the northeastern states towards a cleaner and more sustainable energy future. The seminar will examine the current energy mix in the states and emphasise on the necessity of shifting towards a decentralised and distributed RE deployment with a focus on biogas, compressed biogas, and hybrid mini-grids.