

Where we are – Our Coordinates

AAETI

From
Pollution
Monitoring
Laboratory

@ IHC, New
Delhi

To
Environment
Monitoring
Laboratory@
AAETI, Nimli

AAETI

Major thrust areas for the EML

FSSM

- Characterization of FS in urban and rural setting
- Analysis and Validation of FSTP technologies
- Analysis and validation of WW technologies
- Research into resource recovery from FS

Food Safety

- Detection of antibiotic and pesticide residues in edible products
- Tracking the use of GM foods and their compliance with legal standards
- Checking for sanctity of items mentioned on labels for packaged food

Fresh Water

- Ground water analysis
- Chemical analysis of fresh water samples drawn from municipal taps
- Check for surface water pollution in rivers, lakes

Air Pollution

- Monitoring the particulate matter and other pollutants in Air
- Performing elemental analysis of air samples
- Testing fossil fuels such as coal from thermal power plants

Data Analysis

- Analysis of environmental data of any kind, in collaboration with other CSE teams
- Analysis of data for policy formulation

Lab Work and Field Sampling

AAETI

Some of the findings

	Accra Septage	Accra Public Toilet Sludge	Bangkok Septage	Manila Septage	USA EPA Septage	EML Study
COD	7,800	49,000	14,000	37,000	43,000	26,900
BOD	600-1500	7,600		3,800	5,000	3,260
TS	11,900	52,500	16,000	72,000	38,800	28,812
рН	7.6	7.9	7.7	7.3	6.9	7.4
COD/TS	0.7	0.9	0.9	0.5	1.1	1.0
Figures for comparison taken from Heinss et al. (1999)						

- FS samples have a Moisture content median value of 95%
- A lot of the water content also contributed by the desludging practices
- De-sludging frequencies not fixed, lots of variations observed

AAETI

Resource Recovery – Calorific Value

- EML operates a state of the art Advanced Bomb Calorimeter
- The sludge samples are analyzed for calorific value (MJ per kg of TS)
- The median value for the samples tested so far is 13.6 MJ/kg of TS
- The sample standard deviation is 4.5 MJ/kg
- The value indicates well digested sludge, unlike the high values such as 23 29 MJ/Kg observed in fresh faecal sludge, source: Fytili et al. (2008)

AAETI

CSE's Lab data from field including FSTPs

- Lab intends to use data gathered from its field visits into modeling a probabilistic system that predicts quality parameters
- Correlations within parameters being looked at
- Use of data in making models for contaminant flow advection, dispersion in surface water bodies
- Use of GIS in better representation of field data

THANKS

Any questions or comments!

