GRAIN
BY GRAIN

Green rating of the fertilizer sector

Fertilizer- Sector Performance

Centre for Science and Environment
Sector performance

• Sector Score Card
 ➢ 3 Leaves Award
 ➢ 42% score

• Second industrial sector to achieve 3 Leaves Award after Cement (>40% score)

• Automobile, Paper & Chlor-alkali – 2 Leaves Award (<35% score)

• Thermal power & Iron & Steel - 1 Leaf Award (<25% score)
Sector performance

<table>
<thead>
<tr>
<th>Categories</th>
<th>Weightage assigned</th>
<th>Average sector score (in per cent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product stewardship; Environment, Health & Safety (EHS) & Social responsibility</td>
<td>17.0</td>
<td>52</td>
</tr>
<tr>
<td>Energy & GHG</td>
<td>30.0</td>
<td>43</td>
</tr>
<tr>
<td>Water use</td>
<td>15.0</td>
<td>40</td>
</tr>
<tr>
<td>Pollution control</td>
<td>20.0</td>
<td>41</td>
</tr>
<tr>
<td>Stakeholder’s perception</td>
<td>10.0</td>
<td>32</td>
</tr>
<tr>
<td>Transparency</td>
<td>8.0</td>
<td>35</td>
</tr>
<tr>
<td>Overall Score</td>
<td>100</td>
<td>42</td>
</tr>
</tbody>
</table>

- Rated on **54 indicators**
- The sector had an **average performance** in all important categories like energy and GHG emissions, water use, pollution control and policy
- The sector had a **below average performance** in transparency and stakeholder perception
Plant-wise performance

A big difference was observed in the environmental performance of the units rated best and those that have floundered.

- **Only one plant** managed to get the 4 leaves award with a score of 61%.
- **15 plants** obtained the 3 Leaves Award, scoring between 40 and 58 per cent.
- **3 plants** obtained the 2 Leaves Award, scoring between 31 and 37 per cent; and
- **4 plants** could only get the One Leaf Award, scoring less than 30%.
Energy Efficiency

- Indian plants are one of the most energy-efficient in the world.
Energy Consumption

- While the best Indian plants are comparable to the best worldwide, about one-third of the plants have very high energy consumption.
- Plants with high specific energy consumption are those that were established before 1982 and includes all naphtha based plants and gas based plants with coal based captive generation.
• One of the world’s least emitters of CO₂.
• At 0.7 MT CO₂/MT urea, emissions from Indian plants far lower than China and also lower than the EU, the US and Russia.
Like energy, one-third plants have high CO₂ emissions of more than 1 MT CO2/MT urea.
• Water scarcity is strongly affecting the sector. Of the 23 plants, **35 per cent** are located in over-exploited, critical or semi-critical areas.

• There have been instances of plants having to **temporarily shut down** due to **water shortage**.

• The use of groundwater has led to **protests** from local communities.
Water Sourcing

- The sector’s relatively high dependence on groundwater is a cause for concern.

- Four were completely reliant on groundwater. Of these, two plants were located in critical or semi-critical groundwater zones.

- A further two plants were partially dependent on groundwater.

- Five of the six groundwater dependent plants are located in Uttar Pradesh.
Specific Water Consumption

- **Specific water consumption** of many plants way higher than sectoral best.
- **Worst performing plant** consumed nearly 3 times as much water as the best.
- The **most efficient consumer** was KRIBHCO, Hazira, while the **most inefficient** was NFL, Panipat.
- Inefficient practices, conventional treatment technologies and wet ash handling are the main reasons behind high water consumption.
Water pollution

- **Groundwater pollution** emerged as a key area of concern.

- **Groundwater samples** were collected around 18 plants sites. Of these samples, around 15 plants (83%) **did not comply** with the BIS standard for drinking water. **Ammoniacal nitrogen** concentration was above **the permissible limits**.

- **Final effluent** used mainly for horticultural purposes/green belt development by majority of plants, because they have been asked to be ‘Zero discharge plant’.

- **Several complaints from local communities** regarding the deterioration of groundwater and surface water quality near plants
Water pollution

• Of the **effluent samples** collected at 14 plants, **9 (57%)** did not meet the standards for Total Kjeldahl Nitrogen or Cyanide.

• Many plants (around 10-11) **issued directions/show cause notices during GRP study period** with respect to effluent discharge / effluent dilution / non-installation of CEQMS.

• The sector has underinvested in effluent treatment technologies.

• Many plants raised the issue of the poor financial health for not investing in advanced technologies.
Air pollution

- **Air pollution** is more of an issue for only *naphtha based plants* or those with *fuel-oil or coal based captive power plants*.

- Plants have managed to control odour

- However, Urea emissions from the prilling tower can be reduced by adopting advanced technologies.
Solid and Hazardous Waste

• **Spent catalyst management and handling** in most urea plants is found to be satisfactory.

• Plants are transparent about the waste recyclers to whom they sell the hazardous waste that they generate.

• **Ash pond maintenance** (in plants using coal as fuel) was a key issue at most plants. At some plants, ponds are not properly lined and no dust suppression measures have been adopted.
Environmental, Health and Safety Management

- Plants performed well in Environment Management Systems. But Occupational Health and Safety is a concern.
- Fatal accidents (5-6 fatalities) during GRP study duration.
- Poor preparedness on offsite disaster management plans.
- Plants are old and not adequate investments is being done in OHS.
- Some plants were found to be doing noteworthy work in terms of social responsibility. But most had poor investments in CSR.
GRAIN BY GRAIN

Green rating of the fertilizer sector

The Way Ahead

Centre for Science and Environment
Energy Efficiency

There is significant scope of improving energy efficiency in:

— Naphtha based plant
— Gas based plant using coal based power
— Efficient Heat recovery systems in plants consuming high energy
Reduce Water footprint

- Significant scope to reduce water footprint.
 - SWC can be reduced to less than 4.5 m³/tonne.
 - Plants should strive to achieve **zero liquid discharge** by adopting advanced tertiary treatment technologies; or recycling and reuse to the maximum extent possible, *but not in horticulture or agriculture without proper assessment*
 - Plants should replace the practice of wet ash handling and shift to dry ash handling
 - Curtailing use of groundwater in the sector
Reduce Water pollution

- **Tighten effluent standards**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants commissioned prior to 1 January 1982</td>
<td>Plants commissioned 1 January 1982 onwards</td>
<td>For all plants irrespective of age of the plant</td>
<td></td>
</tr>
<tr>
<td>Ammoniacal nitrogen as N</td>
<td>75</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total Kjeldhal nitrogen (TKN) as N</td>
<td>150</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

- Need to upgrade effluent treatment systems by adopting advanced wastewater treatment technologies

- Use effluent in horticulture and agriculture only after advanced treatment to avoid ground water pollution.
Reduce Emissions

- Urea dust and ammonia emissions (from prill towers and purge gases) need to be controlled by installing suitable pollution control technologies.

- Tighten emission standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Indian standard</th>
<th>World Bank Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM as urea dust</td>
<td>150 (pre-1982 vintage units)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>50 (post-1982 vintage units)</td>
<td></td>
</tr>
<tr>
<td>NH3 (prilling or granulation)</td>
<td>No standards</td>
<td>50</td>
</tr>
</tbody>
</table>
Safety

• Growing concern for safety as most operating plants have become quite old.

• There is a need of independent safety assessment of old plants if government wants them continue to operate for self-sufficiency.

• Plant needs to improve their onsite emergency preparedness plan.
Long term Challenges

Life-cycle Assessment of Urea: **Use-phase environmental impacts are far higher than production-phase.**

- Climate Change
- Ozone layer depletion
- Nitrogen Cycle disruption & pollution
Climate Change & Ozone depletion

- Nitrous oxide (N₂O) emitted from the agricultural fields is a potent **Greenhouse Gas (GHG) & Ozone Depleting Substance (ODS)**.
- It’s GHG potential 300 times that of carbon dioxide & its ODP potential is 0.017 (similar to many HCFC refrigerants)
- N₂O is now the largest ozone-depleting substance emitted through human activities.
- It is also fast rising contributor to global climate change.
- 26 per cent emissions from the Indian agriculture sector consisted of **nitrous oxide**.
- **Urea** produces the **highest lifecycle GHG emissions** per tonne of nitrogen.
- Nitrous oxide emissions increase exponentially with urea overuse.
Nitrogen Cycle

• Humans are disrupting the nitrogen cycle by altering the amount of nitrogen that is stored in the biosphere.

• Only 30-35 per cent of the nitrogen that is applied through fertilizers is taken up by the plants in the form of nitrates.

• Remaining seeps into the surrounding environment causing surface and groundwater pollution as well as a cascade of environmental and health impacts.

• While the desirable ratio of N-P-K application is 4:2:1, the ratio in Punjab stands at 31.4:8:1 and the ratios are also skewed in favour of nitrogen in most other states and regions.

• It is estimated that India loses nitrogen worth US $10 billion per year as fertilizer value, while the costs of nitrogen pollution on health ecosystems and climate are calculated to be US$ 75 billion per year.
Long term challenges

• How to reduce fossil-fuel dependence for producing Nitrogenous fertilizer?
• How do we enhance nitrogen-use efficiency in agriculture and reduce consumption of Nitrogenous fertilizer?
 • *PM Modi’s challenge of cutting urea consumption by half by 2022.*
Nitrogenous fertiliser without fossil fuel?

- Ammonia production needs Hydrogen and Nitrogen.
- Electrolysis was a common means of producing hydrogen
- Fertilizer Corporation of India’s Nangal plant employed electrolysis to produce hydrogen until it switched to hydrocarbons (then LSHS and fuel oil) in the 1970s due to shortage of power in the Bhakra grid.
- While the current cost of hydrogen produced from electricity (particularly renewables) is very high, it is expected to fall with the reducing cost of renewables.
- Many companies offering modern electrolysis-based hydrogen production technology
- Hydrogen may also be produced from biomass including crop residues, municipal solid waste, animal waste through multiple processes including gasification and pyrolysis, and then used in ammonia synthesis.
- Carbon di-oxygen recovery from flue gas is already well established in the sector.
- **Old technology is going to be the modern technology in the 21st Century.**
Innovation in products

- **Improve nitrogen use efficiency**
 - Precision Fertilizer application
 - Fertigation (Fertilizer+ improved Irrigation)
- Products for slow or controlled-release fertilizer urea in soil (ex.: urease and nitrification inhibitor chemicals being mandated in Europe)
 - Investment in research comparing the efficacy and emissions of different nitrogenous fertiliser for different crops.
- Suitable policies to promote bio-fertilizers and city compost to reduce urea consumption.
Indian fertilizer companies spend a miniscule amount of their revenue on research and development.

<table>
<thead>
<tr>
<th>Company</th>
<th>Amount spent on R&D as percentage of revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFFCO</td>
<td>0.008</td>
</tr>
<tr>
<td>RCF</td>
<td>0.04</td>
</tr>
<tr>
<td>GNFC</td>
<td>0.03</td>
</tr>
<tr>
<td>ZACL</td>
<td>0.017</td>
</tr>
</tbody>
</table>
Decontrol the sector

- Bring competitiveness
- To bring the innovations in production and products.
- To reduce subsidy burden.
- To promote balanced fertilizer use and improve soil health.
Halving Urea Consumption?

- Take Nitrogenous Fertiliser into Nutrient based subsidy scheme
- Improve nitrogen-use efficiency to 60% by product modification and cropping management
- Direct Benefit transfer to farmers
- Gradually decontrol the Nitrogenous Fertiliser prices to allow competition and innovation