POLICY BRIEF
THE CASE FOR ELECTRIC
Building scale and speed for zero emissions mobility

Anumita Roychowdhury
Moushumi Mohanty, Shubham Srivastava,
Sayan Roy, Anannya Das

Centre for Science and Environment

Webinar, August 31, 2021
Why zero emissions?

For taming toxic air, heat trapping gases and energy guzzling in transport sector

• Energy demand for road transport to more than double over the next two decades
• Oil demand to increase by almost four million barrels per day in 2040—to be the largest increase for any country.
• Road freight activity will triple by 2040.
• Between 2005–06 and 2019–20, petrol and diesel consumption increased by 2-3 times.
• Close to 85% of crude oil is imported.

Need zero emissions tailpipes and clean energy

Source: IEA 2021, Air Quality and Climate Policy Integration in India
Road transport to upset energy budget in India

- IEA: India - Final energy use of transport by subsector and road transport by fuel in the Stated Policies Scenario, 2010-2040

Source: IEA 2021, Air Quality and Climate Policy Integration in India
Local pollutants to decline but heat trapping CO2 emissions to increase

- Road transport related air pollutant emissions in the Stated Policies Scenario & Road transport related CO2 emissions, 2019-2040

Source: IEA 2021, Air Quality and Climate Policy Integration in India
CO2 reduction opportunities in climate challenged world

• Need big cuts

Note: Scenarios are Stated Policies Scenario (STEPS) and Sustainable Development Scenario (SDS)

Source: IEA 2021 India energy outlook
Petro-economy to electro-economy: Is EV transition inevitable?

Transforming markets

• 126 countries pledged to achieve carbon neutrality by 2050; Total net-zero commitments globally cover half of the world’s GDP.

• 20 countries: 100% zero-emission vehicles during 2040–50. More to follow.

• IEA: Electric vehicles stock to jump from around 5% of global car sales in 2020 to more than 60% by 2030. Annual battery production for EVs to leap from 160 gigawatt-hours (GWh) today to 6,600 GWh in 2030, -- adding almost 20 gigafactories each year for the next ten years.

• Global automotive companies announcing commitments to produce 100 per cent electric vehicles by 2040.

• IC engines to become more complex and expensive as real world emissions regulations tighten…

• Electro economy is also part of the industrial policy
Towards zero emissions Are we prepared?
Uncertain targets

• Policy intent: Ministerial announcements -- 30@30

• **NITI Aayog 2019**: 70% electrification of all commercial cars, 30% of private cars, 40% of buses, and 80% 2/3-wheelers by 2030.

• **Not backed by any regulatory mandate and long-term policy roadmap**

• **Automotive industry’s voluntary targets (SIAM 2019)**: All new vehicle sales for intra-city public transport fleets to be electric by 2030; 40% of new vehicle sales to be electric by 2030. All new vehicle sales to be electric by 2047.

• **State level target**: Eg Delhi – 25% electrification by 2024; Others too
But against the minimum target of 30@30

Currently…. (According to the VAHAN data base):

• **E2Ws**: 0.15% of market share
• **Private electric four-wheelers**: 0.02%
• **Electric buses**: 0.16%
• **Electric goods vehicles**: 0.1%

• **Original target of National Electric Mobility Mission Plan of 2013**: 60–70 lakh electric vehicles by 2020

• **2012-2021**: India registered 6.3 lakh E-vehicles (4.9 lakh e-rickshaws).

• **2012–2019**: EV numbers - an average CAGR of 45% from very tiny stock.

• **Need to maintain minimum average CAGR of 46%** going forward. Challenging for high volume sales.
Electric vehicle registration in India – 2012-2021

Source: Vahan Database
How EV registration needs to grow for a market share of 30-@30

Projection of EV registrations and annual market share to reach 30@30

CSE Analysis based on Vahan Data
Small EV fleet spread thin across the states
(cumulative EV sales including 3 wheelers in states under FAME subsidies)

<table>
<thead>
<tr>
<th>State</th>
<th>Electric vehicles purchased under FAME (in thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maharashtra</td>
<td></td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td></td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td></td>
</tr>
<tr>
<td>Haryana</td>
<td></td>
</tr>
<tr>
<td>Delhi</td>
<td></td>
</tr>
<tr>
<td>Rajasthan</td>
<td></td>
</tr>
<tr>
<td>West Bengal</td>
<td></td>
</tr>
<tr>
<td>Kerala</td>
<td></td>
</tr>
<tr>
<td>Andhra Pradesh</td>
<td></td>
</tr>
<tr>
<td>Telangana</td>
<td></td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td></td>
</tr>
<tr>
<td>Punjab</td>
<td></td>
</tr>
<tr>
<td>Chhattisgarh</td>
<td></td>
</tr>
<tr>
<td>Bihar</td>
<td></td>
</tr>
<tr>
<td>Odisha</td>
<td></td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td></td>
</tr>
<tr>
<td>Jharkhand</td>
<td></td>
</tr>
<tr>
<td>Chandigarh</td>
<td></td>
</tr>
<tr>
<td>Assam</td>
<td></td>
</tr>
<tr>
<td>Puducherry</td>
<td></td>
</tr>
<tr>
<td>Dadra Nagar</td>
<td></td>
</tr>
<tr>
<td>Jammu & Kashmir</td>
<td></td>
</tr>
<tr>
<td>Goa</td>
<td></td>
</tr>
<tr>
<td>Tripura</td>
<td></td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td></td>
</tr>
<tr>
<td>Manipur</td>
<td></td>
</tr>
<tr>
<td>Andaman Nicobar</td>
<td></td>
</tr>
<tr>
<td>Nagaland</td>
<td></td>
</tr>
<tr>
<td>Meghalaya</td>
<td></td>
</tr>
</tbody>
</table>

- **Sales under FAME I**
- **Sales under FAME II (14.05.21)**
EV policies not designed for scale yet........
A lot is happening. But what is the effectiveness of accelerators?

- FAME II incentives
- Zero emissions mandate?
- Production linked incentives
- Fuel economy regulations
- Charging and battery ecosystem
- Financing strategies
- State level policy for bottom up pressure
FAME incentives and EV market: Can this catalyse big change?

• **FAME incentive scheme**: Corpus of Rs 10,000 crore -- **to support only 15.6 lakh vehicles** – (10 lakh 2-wheelers, 5 lakh 3-wheelers, 55,000 passenger cars and 7,000 electric buses).

• **E2W and E3W account for more than half** of the FAME subsidy package;

• **Charging infrastructure and four-wheelers are fourth and fifth** in the pecking order.

• **FAME II – delayed**: Only 6% of planned fleet target registered as of July 2021; with total sales of 94,252 vehicles—73,753 2-wheelers, 18,900 3-wheelers and 1,598 four-wheelers.

Too small to have a catalytic effect
FAME trajectory: Small steps

FAME I scheme in 2015: limited impact -- poor design and lack of focus
- Most of the incentive diverted towards mild hybrids;
- promoted vehicles without performance criteria
- Resources spread too thin among segments

FAME II - strategic shift: Prioritized high performance vehicle models
(Buses, three-wheelers, high-mileage commercial delivery fleet and ride hailing Two-wheelers.)
- Slow progress -- two-thirds of the intended FAME II scheme duration elapsed (as of March 2021),
- Significant portion of the fund remains underutilized (as of April 2021). (2021 WBCSD)
- FAME II scheme extended for two years to utilize the unspent money.
- Change in design without infusion of new resource or bigger targets
How is incentive support playing out in different vehicle segments?
Two wheelers: Big opportunity
Numerous and consume maximum petrol

- Niti Ayog: 70-80% electrification possible

- Expected to achieve price parity with ICE earlier

- Likely to reach the tipping point for scale much quicker if strategies are refined and supported.

- Sales are picking up to counter the high petrol prices.

Source: Petroleum Planning and Analysis Cell
Disruption in e-2 wheeler market

- Simplicity of EV technology enables entry of new players -- free from the legacy challenge of the ICE vehicles.

- 20 manufacturers with 41 E2W models in the market.

- Only three out of the seven conventional ICE two-wheeler manufacturers have introduced products in the electric segment, while the 17 new companies form 84% of the sector.

- Start-ups and non-conventional players enter with innovative business models.
Market share of ICE 2Ws manufacturers (FY 2020)

- Hero MotoCorp: 35.78%
- Honda Motorcycle and Scooters: 27.02%
- TVS: 13.84%
- Bajaj: 11.93%
- Royal Enfield (Eicher Motors): 11.61%
- Rest: 7.66%

Market share of E2Ws manufacturers (FY 2020)

- Hero electric (Subsidiary of Hero MotoCorp): 31.69%
- Okinawa: 21.74%
- Ather Energy: 17.27%
- Ampere Vehicles: 11.61%
- Revolt Motors: 9.66%
- Rest: 8.03%

Source: Statista, Autocar
E-2 wheeler market: evolving rapidly

• **FAME I** allowed cheaper, low-speed and low range scooters with lead acid batteries

• **FAME II: Performance criteria** -- minimum range of 80 km per charge and minimum top speed of 40 kmph; defined energy efficiency, minimum acceleration, and higher number of charging cycles. Disallowed lead acid battery-powered scooters.

• **Innovation in business models** -- manufacturers provide charging solutions around their products and have platforms for their users to provide longer term solutions.

• **E-2W sales have picked up after petrol price hike**

 How soon can we seen a bigger turn around?
On-road price of 2Ws with and without incentives in Delhi

FAME II lowered average price by 35%; FAME + Delhi government incentives can reduce on an average by 57% from the on-road price (13 vehicle models in Delhi)

CSE Analysis
Total cost parity of E2W is already here with FAME + state incentives

ICCT estimates:
FAME and electric cars

FAME II not for personal cars

- **State policies -- Delhi electric vehicle policy --** initial subsidy support for a targeted c-car fleet; Tax waivers, non-fiscal preferential incentives, reliable charging network...

- **Limited models** -- Less than 10 vehicle car models available with range varying between 140 km to upto 300+ km. Most variants have a top speed of 80 kmph.

- **Cars need to be part of the 30@30 or stronger targets:** Total cumulative battery capacity needed in 2030 to support this target, the share of cars have to be at least 31%. (ICCT)

- **Key to scale** -- OEM price, fiscal and non-fiscal support, model availability, and charging infrastructure.

- **Consumer expectations of range:** Tata Nexon model and consumer expectation. Improve test procedures to reduce gap between certified range and on-road performance.
Incentive for E-passerenger cars

On-road price of private E4Ws with and without incentives in Delhi

Upfront price reduce by an average of 19% -- several models still remain more expensive than petrol counterparts.
Incentive for cars for commercial use

On-road price of commercial E4Ws with and without incentives in Delhi: Upfront price reduce by an average of 32% -- several models remain slightly more expensive than their petrol counterparts.

CSE Analysis
Special case of e-buses
FAME and buses: Challenge of scale

- **Department of Heavy Industries**, India could be the second-largest e-bus market by 2030 if 4 out of 10 buses sold are electric.

- **FAME I**: less than 500 buses registered; **FAME II** - target of 7,000 buses.

- **FAME II** - tendering of 2,450 buses - a lot of it could not be procured during pandemic

- **Union Budget of 2021–22**: funding 20,000 buses – not linked with electrification.

- **E-bus industry – new entrants**: Until 2020–21, about 74% of the total e-bus supply order received by new market players (Olectra-BYD, PMI-Foton, JBM-Solaris etc).

- Traditional OEMs (Tata Motors and Ashok Leyland), together dominate ICE bus market at 81%; But 26% of EV bus market.

- Tata Motors is the second highest seller of e-buses.
E buses: Special challenges

• **Pandemic disruption**: massive losses in ridership and revenue for STUs -- increased the viability gap funding requirement by nearly 70 per cent.

• **Upfront capital investment** -- more than double that of the ICE buses—plus battery and charging infrastructure. Capex -- almost 45–50%.

• **Slow and repeated tendering process in several states**

• **FAME II** -- coverage, promotion of cleaner technology, setting up deployment targets along with dedicated fund allocation, etc.,

• **New amendment in June 2021** -- Energy Efficiency Services Limited (EESL): Aggregate demand for e-buses (also three-wheelers) for deployment in Mumbai, Delhi, Bangalore, Hyderabad, Ahmedabad, Chennai, Kolkata, Surat and Pune. Support charging

• **EV growth centres and demand aggregation** for concentrated effort, reduce cost and present a learning curve to other cities.
E buses: Special challenges

- **FAME II mandates gross cost contract (GCC) for procurement and operations** – OEMs/ designated operators to provide bus and operate on behalf of the STUs on per kilometre payment basis to de-risk the STUs.

- **Reduce upfront costs while improving the efficiency of services.** – But GCC not suitable for all STUs. – Challenge of operating a small e-bus fleet on GCC model and the rest on their own. Open and flexible FAME incentive structure.

- **Incentive should be more flexibly provided** based on technical and financial viability of the projects.

- **E-bus procurement more service level oriented as STUs** -- specifying service needs instead of only specifying the details of the vehicles.

- **Not much scope for service guarantee:** FAME II - capital incentive up to 40% of total bus cost; whole subsidy amount to be paid within 6-7 months of bus operations. **Support for a longer operation period**
E buses: Special challenges

- Quicken price parity and make total cost of ownership comparable with ICE buses. It is possible:

 A 2019 study (International Journal of Technology): Calculated TCO for a period of 25 years (assuming the normal life of transport infrastructure in India). While the **TCO for electric buses is Rs 36.6 million, for diesel buses it is Rs 39.1 million.**

- **FAME II subsidy**: Create more options for a combination of charging technology. Currently, only conduction charging facilities. Possibilities of other options (DC Pantograph charging or battery swapping etc)

- **City level e-bus deployment plans** – routing and driving pattern, e-bus oriented transit infrastructures like depots, terminals, bus stops, etc.

- **Align to improve grid, local sub station capacity etc**
FAME and 3-wheelers: Potential for rapid electrification

- NITI Aayog - potential for 80% electrification by 2030.

- Total cost of ownership parity expected quicker.

- Mandate possible: Low volume, high frequency and short haul transport system attractive option for quicker electrification.

- Limited access to capital, Banks reluctant to lend to start-ups ---- Daily rentals/lease for operations makes financing and monthly repayment a challenge.

- Products innovation needed -- Out of 23 most commonly sold E3W models, 17 have a range equal to or greater than 100 km; 30% --120 km;
- Top speed of only 9% models exceeds the 25 kmph mark.

- Manufacturing of lithium-ion E3W models conforming to safety norms;
- E-rickshaw models continue to dominate
FAME and Cargo vehicles

• Lower cost of ownership and operating costs make electric cargo vehicles attractive

• Operates at 1/6th of the running cost of a petrol/diesel-fuelled vehicle, though with higher acquisition costs.

• Vehicles with high-payload capacity, requires uninterrupted running times, or, larger range;

• Limited public charging stations deters adoption-- public charging facilities needed to ensure minimal downtime.

• Product development and mandate for targeted electrification is important
FAME and fleet aggregators: Scalable

- **High utilization segments** -- ride-hailing, urban freight/ deliveries, and employee transport.

- **Ride hailing**: Voluntary and government target for electrification. 40% by 2026?

- **Quicker recovery of cost and viable**:
 - ICCT’s assessment- at current cost and incentive, some models are cheaper than ICE in terms of 5-year TCO and cost per kilometre. Some marginally higher; Additional incentives can help

- **More strategies**:
 - Differential fares between e-ride services vs ICE vehicle based services.
 - Reserved parking spaces for e-fleet operators, preferential parking permits, preferential parking rates etc

- **Special needs of overnight charging, home based and neighbourhood scale roadside charging with discount**,

- **Preferential electricity rates.**

- **Delhi, -- a new scheme**: Ride hailing and delivery aggregators to convert 25% of fleet within one year of notification of the scheme and 50% in the subsequent year.
FAME and delivery fleet: Scalable

Phenomenal increase in last-mile deliveries across urban e-commerce,
(e-Kart, Delhivery, GATI and others to transition to Evs; Amazon and Ikea have set global targets to move to electric vehicle deliveries.)

- **Delhi government** partnered with Flipkart, Amazon, Zomato, Blue Dart Express, and 26 other companies to start using electric vehicles for deliveries

- **Electrification of feeder services of metro.** Delhi metro-- facility is now available at 29 stations, with an operational fleet of over 1,000 e-rickshaws.

- **Need management of last-mile urban freight and deliveries:** Regulation of daytime entry of heavier electric delivery vehicles; Link incentives with e-kilometers based on odometer reading.

- **Limited EV options for heavier delivery vehicles,**

- **Permit concerns related to cross-sector usage of** the same vehicle, and licensing system of two-wheelers.

- **Charging plan is critical**
Need targets and mandate
Need zero emissions mandate

- Incentive-based strategies already in place

- A ZEV mandate can ensure robust supply and larger model availability; address skewed costs etc

- A mandate-based strategy provides certainty; encourage investors; provide flexibility to the industry to develop plans to achieve targets.

- A mandate is revenue neutral strategy for the government - leverage market competition to promote ZEVs. Free up government capital for EV promotion, charging infrastructure

- A credit trading mechanism: provide an incentive to manufacturers to build EVs, win ZEV and emission credits, get a fresh revenue stream from banking and trading over-compliance credits.
Need zero emissions mandate

• Manufacturers can qualify for ZEV programme credits based on vehicle performance aligned with FAME eligibility: electric vehicle range, energy density and power consumption for BEVs; and range etc.

• Non-compliance with criteria can attract lower credits which can neither be banked nor traded.

• Manufacturers with little or no electric vehicles in their inventory can buy surplus credits to avoid penalties. Trade within same segment.

• Linking energy efficiency and range with the ZEV mandate will ensure that low emissions and higher calibre vehicles will receive higher credits.

• Global experience: Combination of target, ZEV mandate and incentives can be game changers.
Globally mandate + incentives have worked

- **California ZEV Mandate** - 14 states in the US have adopted California's ZEV programme

- **China's NEV credits**: use both production as well as technical factors (range, efficiency and power rating of vehicles).

 Vehicles with higher FE performance get more credits, capped at six credits per vehicle.

- **Europe**: alternate compliance pathway built into the CO2 emission standards for light passenger and commercial vehicles: 2025 onwards, manufacturer will have a discount ratio on their specific emission targets if producing electric vehicles.
Leverage fuel economy standards
Need tighter benchmarks to push EVs

- **Assessment of Stage 1 FE standards**: Car companies have not only met but also exceeded the 2017–18 requirement of fuel efficiency.

- **IEA/1CCT evaluation**: Average fuel consumption of new light-duty vehicles sold in 2018 was roughly 9% ahead of the target for that year. Industry has comfortably achieved its target.

- The fleet is only 7% away from meeting the next target in 2023.

- Only 1–2% electrification of major carmakers can meet Stage 2 targets easily without any significant changes in the ICE technology. (ICCT)

- Yet industry opposing timely implementation of the stage 2 FE targets.
Allowing super credits for ineffective approaches weaken the standards

Super credits are allowed for annual calculation of compliance with CAFC standards:

- i) Ineffectual technology approaches: Regenerative braking, start–stop systems, tire pressure monitoring systems, and six-speed or more transmissions.

- ii) Electrification: Battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), and strong hybrid electric vehicles (HEVs) and

• Weak targets and easy options do not drive electrification. Link super-credits with electrification. Phase out other ineffectual credits

• Europe -- Europe has set CO2 standards at 95 CO2 g/km in 2020–21, as opposed to 113 CO2 g/km in India in 2022-23. Europe aiming for 60 CO2 g/km for cars in 2030 and even lower, - close to most Indian two-wheelers -- Evs are 10% of new sales
Charging eco-system?
Charging: can make or break

- **Deloitte global automotive consumer survey 2018**: 36% Indians hold lack of charging infrastructure and charging anxiety as bigger deterrent than cost or range.

- **Ministry of Power (MoP) notification**: electricity consumed for charging vehicles not to be considered as transmission or distribution or trading of electricity; no license required. Recognized battery swapping.

- **Building-ready**: MoHUA - Model Building Byelaws, 2019; provide for ‘electric vehicle only parking areas’ within premises. Building premises can have additional power load.

- **FAME II support for charging infrastructure increased** to 10% of 10,000 crores total outlay. (Rs 300-400 Cr/yr). Reduced GST on charging stations from 18% to 5%. But not extended to battery swapping.

- **Access to capital a challenge esp for small players** -- cost of charging equipment, land and grid connectivity requires initial capital.

- **Further develop robust EV charging standards**. (Bharat DC 001 and AC 001) to be further reformed to enable charging of all types of vehicles. BIS and DST working on indigenous charging standards for India. Low-cost AC charger (LAC); interoperability of chargers.
Charging: address barrier

- **2021 WBCSD report** -- Unclear rules on grid upgradation strategies; land availability for private investments; absence of subsidy support to battery swapping; double taxation levied on charging services; and operational difficulties related to the open-access regulation threshold.

- **Swapping**: Batteries sold separately for vehicles will reduce the upfront cost of vehicles and the need for a dense recharging network.
 - Swapping requires a standardized system of battery cavities, batteries and chargers, in order to enable interoperability, and a system that will work well for the commercial segment.
 - Permit battery swapping to avail FAME subsidy, and reduce GST on charging and battery swapping services.

- Some states, such as Delhi, provide purchase incentives for vehicles sold without batteries.

- **City’s mobility plan needs to integrate a charging network plan.**

- Integrate captive charging stations with larger public charging network to improve utilization and access.

- **Varying usage patterns and charging requirements according to vehicle types makes the decision even more complex.**
Delhi’s EV policy: atleast 1 charging station in every 3km x 3 km grid. – works out to be atleast 200 charging stations

Currently 72 stations operational (Delhi’s official EV online portal)

Clustering approach - 84% with one charger connector. (Each connector or gun charges one vehicle at a time.)

All stations within 500 meters of a major road, arterial or sub arterial,

89% of stations within 500 meters of a metro station.

All stations in residential areas or commercial/mixed-use land
ICCT study 2021: Life-cycle GHG emissions analysis shows the advantage of EV pathway 2021

--- Even at 95% EVs by 2040 additional electricity demand from vehicle electrification is just 0.9% increase in generation in 2030; 1% increase in generation in 2040 from base case of 1% EVs.

--- If no new policy on coal and gas power plants SO2 to see modest increase: But net emission reductions in NOx, CO2, and PM2.5.

--- If power plant emission controls improve, coal power plant retired, RE increase etc - PM2.5 to reduce by upto 27%; SO2 by 85%, Nox - 77% , and CO2 - 25%
Localisation?

- **Production linked incentive (PLI)** of Rs 18,000 crore for production batteries – 50GWH target

- **Linked to the National Mission on Transformative Mobility and Battery Storage, 2019**, local manufacturing; raw materials, electrochemistry, and end-of-life treatment of cells, modules, and battery packs.

- **Needs matching demand from the EV sector** - PLI incentives to be disbursed on the basis of incremental sales from domestic units.

- **Five years too short** to get adequate commitment from manufacturers; high uncertainty about volumes, evolving battery chemistries. Too large a risk if the support structures and roadmap not clear.

- **The 30@30 target will require much larger battery capacity.** India may need annual addition of 246.9 GWh and cumulative addition of 824.7 GWh in 2030. (ICCT)
Battery eco-system

- **Battery ecosystem**—battery production and raw material sourcing, battery assembly and management, among others.

- **Battery raw material security and access to mined materials** -- challenge to localization of battery cells

- **Vulnerability to geopolitical complexities**; global supply of material and minerals and battery technology. Securing supply chain for cobalt, lithium, nickel, graphite

- **Battery costs**: Between 2010 and 2020, battery price reduced by over 85% -- to drop further below $100 per kWh. Promote diverse battery chemistry

- **Recycling to recover** lithium, cobalt, or nickel: Scalable recycling technologies and regulations on recovery rates for strategic resource. Improve rate of recovery. Need regulatory mandate for collection of spent batteries and recycling.

- **Standardize battery products** with information on the chemicals used and streamlined networks for battery collection
State level policy: Need bottom up pressure

- 15 states have either notified or drafted EV policies

- **Delhi Electric Vehicle Policy** -- EV sales share increased from 1.23% to 3%. E2W market grown more than twice, electric car registrations - increase of 18% over last year...

Varying scope of state policy:

- **Demand side incentives** 16 parameters -- Odisha (13), Delhi (11) and Punjab (10). -- Delhi and Odisha define technical eligibility for availing incentives

- **Supply side incentives** – manufacturing -12 parameters -- Tamil Nadu (11), Uttarakhand (10) and Uttar Pradesh (9). Delhi (None)

- **Non-fiscal enablers** - Odisha (6) Andhra Pradesh (8) Delhi (7)

- **Industrial policy** (interest free loans and reimbursement of GST for companies setting up up factories, business infrastructure with subsidies on capital (land, water, electricity, waste disposal and testing facilities)).
Financing EVs?

- **2021, NITI Aayog - Rocky Mountain Institute study**: for 70% electrification in 2030 cumulative capital cost expected to be Rs 19.7 lakh crore by 2030

- **State support** -- interest rate subvention; low cost loans etc

Barriers:
- **High financing cost** (high interest and insurance rates);
- **Low loan-to-value ratio, and limited financing options** for retail customers.
- **Banks and non-banking financial institutions** – 50% to four-wheeler passenger vehicles, 40% to commercial vehicles, and only 10% to two-wheelers.
- **Concerns around performance and resale value of Evs**: Two-wheelers and buses have different parameters for financing.
- **Unsecured borrowing from the unorganized sector** at higher rates.
- Two/three-wheeler fleet operators need high daily vehicle usage to justify their business model viability to financial institutions.
- **This needs a robust charging infrastructure network to support operations and financing plan**
Financing: Find answers

• Increase access to low-cost financing; Need priority sector lending mandates

• **State policy important** -- interest rate subvention; product guarantees and vehicle performance and increase resale values.

• **SBI started Green Car Loan for electric cars**, in April 2019. Provides discount.

• **Fleet operators can offer risk sharing mechanisms** with the financial institutions by providing guarantees for their driver partners including partial credit guarantees, share default risk with Fis etc.

• **Offer utilization guarantees to driver partners** to help achieve TCO parity while improving the fleet economics, innovate the business model and set target for fleet electrification.

• **Start-ups financing.** Venture capital funding is catalysing this sector -- bigger role in two- and three-wheeler markets where financing penetration is low
Need scale and urgency

-- Need ambitious regulatory target: Set the bar high

-- Need target setting for longer term policy visibility to bring more certainty in investments: vehicle segment-wise, for charging, and production facilities

-- Need zero emissions mandate to upscale: Consider production based ZEV credit regulations

-- Central and state level: define milestones for each strategy for timebound implementation that is measurable and verifiable

-- Devil in design of each strategy

-- With tighter CO2/FE targets and post BSVI emissions standards, EV technologies to be more cost effective

This transition is inevitable
Thank You