

Challenge of the new balance

Chandra Bhushan

- 'Bottom-up' study to understand the potential to reduce GHG emissions in five most emissions-intensive industrial sectors and the power sector
 - Benchmarking energy and GHG emissions with Best Available Techniques (BAT)
 - Researching technology options; round table with industries to understand their future technology deployment pathway, limitations, dis/advantages

- Two pathways projected till 2030-31
 - Business As Usual (BAU): Changes that industry is making or will make on its own to reduce energy consumption -- high cost of energy is the main driver of change. Promises made by the government in NAPCC included in this scenario; changes due to environmental regulations also included
 - Low Carbon (LC): Policy push required to mainstream emerging, not yet commercialized technologies. In many sectors, it is also a *'leap into the unknown'*. Combating climate change is the main driver of change.

- Resource requirement
 - Study of 164 greenfield projects cleared in last 3 years by MoEF
 - Land and water requirements in the BAU and LC scenarios
 - Raw material and fuel requirements based on production projection and energy profile

Iron and Steel

GJ/tcs

Iron and Steel

Average 65% higher than BAT; even the best plant 30% above BAT

Highest potential in BF-BOF; about 25% in coal DRI-EF

Per capita steel production in 2030-31 will be about 210 kg; equal to the <u>current</u> global per capita steel consumption

Production projection

Technology roadmap: BAU

- BF-BOF: Energy consumption to reduce by about 5 GJ/tcs by adopting three mature technologies CDQ, TPT & PCI and by improving process controls
 - Coal DRI-EF: Power generation 500-600 kWh/tonne-DRI from waste heat recovery and char boilers; power consumption in EF reduced by 200 kWh/tcs.
 - Marginal improvements in gas DRI-EF

Technology roadmap: LC

- BF-BOF: Energy consumption can be reduced further by about 3 GJ/tcs by installing cogeneration systems and recovering all low grade waste heat (all experimental technology)
 DRI-EF: No change in DRI production_EE powers
 - **DRI-EF:** No change in DRI production. EF power consumption can be reduced by another 300 kWh/tcs by adopting advanced technologies like scrap/DRI preheating by post combustion of flue gases, oxy-fuel burners etc.

Iron and Steel

Steel

ron and

- High ash coking and non-coking coal
 - High silica and alumina content in iron ore
- BF-BOF energy consumption difficult to reduce below 20 GJ/tcs
- DRI-EF energy consumption difficult to reduce below 25 GJ/tcs

- Sample: 3 out of 5 operating smelters; 62 per cent of total aluminium production
 All smelters in the sample based on state-of-th
 - All smelters in the sample based on state-of-theart pre-baked anode technology – all upcoming plants also based on the same technology

- Scope to reduce energy consumption in refinery
 Aluminium smelters in India are among t
 - Aluminium smelters in India are among the best in the world in power consumption
 - Power, while efficiently used, is produced in inefficient coal-fired power plants (Hindalco 23%; Nalco 29%).

Low global average GHG emissions primarily due to sourcing of 50% electricity from hydro power

Per capita aluminium production in 2030-31 will be about 5 kg -- one-third of the current per capita consumption in Japan

Per capita aluminium production in 2030-31 will be about 5 kg; one-third of the current per capita consumption in Japan

Technology roadmap

Aluminium

BAU

- Improve efficiency of captive power generation and reduce emissions intensity to 0.9 kg/kWh
- Convert remaining soderberg smelters to PFPB
- Reduce fuel consumption in alumina refinery by 15 per cent
- LC
 - BAT for alumina production
 - Captive power emissions factor 0.85 kg/kWh
 - 30 per cent electricity from renewables

Cement

 Sample: Top six companies; 51% of total cement produced in the country

Cement

Per capita cement production in 2030-31 will be about 630 kg -- about the same as 2003 per capita consumption in China
Technology roadmap

BAU

- Blended cement market share 95% (70% currently)
- Blending proportion 40% (30% currently)
- 10% substitution of kiln coal by alternate fuel regulatory oversight needed
- Incremental reduction in fuel and power consumption by 0.5% annually
- LC
 - Blending proportion reach 50% (30% currently) thermal treatment and regulatory changes required
 - Waste heat recovery unit of 3 MW/mMT clinker capacity

Sample: Eight companies; 14 plants; 68% of Fertilizer total urea produced in the country

Feedstock of plants surveyed

Fertilizer

Fertilizer

Fertilizer

India currently imports 25% of the urea demand. We have projected 3% annual growth in production; however, industry believes this may not possible due to the non-availability of gas

Technology roadmap

- Fertilizer
- BAU
 - NPS (2006-2010) envisages conversion of all
 - plants to natural gas, but availability is still 25% below allocation; we assume about 10% of urea will still be produced from naptha and fuel oil; all new capacity addition will be based on natural gas
 - New plants operating at India best which is also current BAT
 - Old plants reach current BAT by 2030-31 (0.6% reduction annually)

Technology roadmap

Fertilizer

LC

- All natural gas feedstock from 2015 onwards
- Govt. has set an ambitious target of reducing energy consumption 10% below current BAT through research in high-pressure primary reformers and shift catalysts, membrane-based CO₂ removal, low-pressure synthesis catalysts and solid oxide fuel cells for captive power generation etc. We assume new plants after 2020 operate at 10% below current BAT

- The cumulative emissions avoided in LC over BAU between 2008-09 & 2030-31 is about 83 mMT of CO₂. Mainly due to feedstock switch
 - Even without technology improvements, the cumulative emissions avoided is about 80 mMT if all heavy feedstock-based plants are phased out by 2012.

Sample: Eight companies; 18 plants; one-third of total paper produced in the country

Pulp composition of plants surveyed

Paper and Pulp

Primary energy consumption

- High primary energy consumption because of:
 - Small mill size (one-seventh the average capacity of a European mill);
 - Multiple raw materials;
 - Multi-product nature of plants;
 - Large number of old plants

Per capita paper production (2030-31): 20 kg One-fifteenth of <u>current</u> per capita consumption in the US.

Technology roadmap: BAU

- 50% paper from wastepaper, reducing the energy and GHG intensity significantly
- Kraft mills specific energy consumption reduced to 40 GJ/ADt (50 GJ/ADt currently) by planned increase in the size and change in technology ("Duel C" digesters, 7 effect evaporators, advanced paper m/c)
 - Wastepaper mills too reduce specific energy consumption to 15 GJ/ADt by increasing mill size and advanced paper m/c

Technology roadmap: LC

- Kraft mills specific energy consumption can be reduced to 30-35 GJ/ADt (50 GJ/ADt currently) but will require: regulation on mill size (minimum 0.3 mMTpa), retirement of 2.0 mMTpa capacity, high capacity-high speed advanced paper m/c, continuous digesters, BLS gasification etc.
 - Newsprint production from 80% wastepaper, advanced CMP plants and high capacity-high speed advanced paper m/c

Sample: 81 coal-fired plants, 8 lignite-fired plants **Power Sector** and 42 gas-fired plants -- more than 90 per cent of the coal, lignite and gas fired power generation capacity in the country

Power generation: 2007-08

Power Sector

- Efficiency lower than what is possible with advanced steam parameters and better grid and load management practices
 - However, coal quality (gone down over the years) and high temperature and humidity are limiting factors
 - NTPC Sipat India's first supercritical plant (1,980 MW) – net efficiency of 33.8% (HHV) and net specific CO₂ emissions of 0.96 kg/kWh (NTPC Simhadri, 34.6% and 0.94 kg/kWh)

Power generation projection

Power Sectol

 Falling elasticity between gross power generation and GDP; 8% growth rate – Integrated Energy Policy

 India's per capita gross power generation in 2030 about one-seventh of current per capita power generation in the US.

Technology roadmap: BAU

- Proportion of gas to total power generation constant (9.6%) – capacity 50,000 MW in 2030-31
- Hydro growth 4% per annum (last 20 years' trend)
- Nuclear 30,000 MW government push
- Onshore wind 40,000 MW in 2030-31 (6% pa)
- Biomass 20,000 MW (5,000 MW each from agro waste and bagasse cogeneration; 10,000 MW wood)
- Small hydro: 8,000 MW (past trend)
- Solar 20,000 MW
- Rest from coal improved efficiency in existing stock; 30% supercritical till 2020; after 2020 only supercritical plants

Power Sector

Technology roadmap: LC

- Gas, hydro, nuclear, onshore wind same as BAU
 - Biomass 50,000 MW (5,000 MW each from agro waste and bagasse cogeneration; 40,000 wood)
 - Small hydro: 15,000 MW (entire capacity)
 - Solar 100,000 MW

Power Sector

- Offshore wind: 50,000 MW
- Rest from coal improved efficiency in existing stock, retirement of 10,000 MW capacity; 80% supercritical till 2020; after 2020 only supercritical/ ultra supercritical plants

O		2008-09	2030-31 (in MW)	
Power Sect		(in MW)	BAU	LC
	Coal-based power plants	81,606	3,40,000	2,80,000
	Gas & oil-based power plants	18,256	50,700	50,700
	Large Hydropower plants	36,885	84,500	84,500
	Nuclear power	4,120	30,000	30,000
	Solar PV	0	10,000	55,000
	Solar thermal (CSP)	0	4000 – without	7,500 – without
			storage	storage
			2000 – with	15,000 – with
			storage	storage
	Onshore wind	10,891	40,000	40,000
	Offshore wind	0	0	50,000
	Biomass	1,752	20,000	50,000
	Small hydropower plants	2,430	8,000	15,000
	Total	1,56,000	5,89,200	6,77,700

LC

Power Sector

Power Sector

- Cumulative emissions avoided by opting for LC over BAU is 3.4 billion MT CO₂ @ US \$60 / tonne CO₂ avoided
- This is 3- 4 times the price of CERs under CDM

Resources and resource constraints

WATER WITHDRAWAL

Freshwater

- 2008-09: 41,538 million cubic meter/year
- 1.1 billion peoples' daily water need (100 lpcd)

WATER CONSUMPTION

- 2008-09: 5,641 million cubic meter/year
- A billion peoples' daily drinking and cooking need (15 lpcd)

Land: 2008-09

Land

Additional land required (million hectares) excluding land required for biomass

Additional land required (million hectares) excluding land required for biomass

-and

Additional land required (million hectares) excluding land required for biomass

Additional land required for plants (million hectares)

Additional land required for mines (million hectares)

GHG emissions scenario

What the future looks like

-ow carbon growth

- In both BAU and LC, major reductions in emissions intensity will be achieved by 2020-21.
 - After 2020-21, in steel, aluminium and fertilizer the emissions intensity stagnates; in paper and cement, the reduction is moderate and largely because of change in raw material.
 - By 2020-21, aluminium, cement and fertilizer will operate at BAT levels; steel and paper will operate at highest possible levels considering the structure, technology and limitations.
 - Everything in power sector depends on how ambitious we are in deploying low/no-carbon technologies. Cost is the factor.

What the future looks like?

- Reducing emissions post 2020 will be a challenge.
 - By 2020, we will exhaust all 'low hanging' options as well as high-end commercialized technologies.
 - Post 2020 new, high-cost and not yet commercially available technologies will be required to reduce emissions significantly. And it will be expensive.

What are the implications of this study for international negotiations?

Low carbon growth