

RESIDENTIAL WORKSHOP & TRAINING PROGRAMME

THE INDIAN POULTRY SECTOR

Perspectives on Role of Vaccination in Reducing Diseases in Poultry

Science, Challenges and Possibilities Context of Indian Poultry Sector

Dr. Sandeep Bhatia Principal Scientist, ICAR-NIHSAD, Bhopal

Introduction

- Poultry sector in India is a major contributor to food security and rural livelihoods.
- Vaccination is a fundamental tool to prevent major infectious diseases.
- Protects flock health, reduces economic losses, and ensures sustainability of poultry farming.

What is Vaccination?

- Inoculation with a biological substance (antigen) to stimulate resistance or immunity to a disease.
- Antigen is usually a small dose of attenuated (weakened) organism.
- Triggers the body's defense system to produce:
 - Antibodies
 - Immune cells to attack the invading organism.

How Do Vaccines Work?

- Vaccines stimulate the immune system against disease-causing agents.
- Can be administered in various ways (ocular, nasal, water, injection, etc.).
- Create "memory" response with antibodies and immune cells.
- Repeated exposure (via boosters) enhances protection.
- Multiple vaccinations maximize immunity in flocks.

Why Do We Vaccinate?

- Essential for poultry management and flock success.
- Protects millions of birds from contagious and deadly diseases.
- Improves flock health and production efficiency.
- Cost-effective compared to outbreak losses.
- Not a substitute for biosecurity and sanitation.
- Reduces clinical disease and optimizes flock performance.
- Some vaccines (e.g., Salmonella) also benefit human health.
- For breeders:
 - Protect pullets and hens from diseases.
 - Protect progeny from vertical disease transmission.
 - Provide passive immunity to progeny.

Types of Poultry Vaccines

Three main forms:

- Live (Modified/Attenuated): Naturally or genetically modified mild strains.
- Inactivated (Killed): Whole viruses/bacteria inactivated and formulated as injectable.
- Recombinant: Use live virus/bacteria as vectors carrying protective antigen genes.

Types of Poultry Vaccines (by Contents)

- Viral vaccines
 - MDV, ND, IBV, IBDV, Reovirus, ILTV, etc.
- Bacterial vaccines
 - MG, MS, Cholera, Coryza, E. coli, Salmonella enteritidis, S. typhimurium, etc.
- Protozoal vaccine
 - Coccidiosis

Basics of Poultry vaccination

Number of vaccinations

Age of the first vaccination

Interval between Subsequent vaccinations

- 1. Stimulation & maintenance of protective immunity
- 2. Development of immunologic memory

Basics of Poultry vaccination

Layers: Vaccination Schedule

Age	Vaccine	Dose	Route
5–7 days	F/Lasota	-	I/R or I/O
14–16 days	I.B.D.	-	I/O or D/W
24–26 days	I.B.D. (booster)	-	D/W
30 days	Lasota (booster)	-	D/W
7th week	Fowl Pox	0.2 ml	I/M
9th week	Deworming	-	-
10th week	R2B	0.5 ml	I/M
15th week	Debeaking	-	D/W
17th week	Lasota	-	-

I/N – Intra Nasal I/O – Intra Ocular D/W – Drinking Water I/M – Intra Muscular

Broilers: Vaccination Schedule

Age	Vaccine	Dose	Route
3–5 days	Lasota	-	I/O or I/N
7–9 days	I.B.D.	-	I/O or D/W
16–18 days	I.B.D. (booster)	-	D/W
24–26 days	Lasota (booster)	-	D/W

I/N – Intra Nasal

I/O – Intra Ocular

D/W – Drinking Water

I/M – Intra Muscular

Vaccine Handling and Storage

For all vaccines:

- Transport in well-insulated box with cool packs.
- If vaccine arrives hot → contact manufacturer/distributor.
- Store at 35–45°F (2–8°C).
- Avoid freezing, overheating, and intense light.

For Live Vaccines:

- Transport with ice packs to maintain constant temperature.
- Reconstitute with diluent just before application.

For Inactivated Vaccines:

- Remove 24 hrs before use to reach room temperature.
- Warm water bath allowed (≤100°F, max 5 hrs).
- Do not expose bottles to direct sunlight during transport.
- Gently agitate bottles thoroughly before use.

Vaccine Emulsion Check (Before Use)

Normal (OK to Use):

- Uniformly milky white.
- Significant settling → two layers.
- Slight settling → two layers.

Broken Emulsion (DO NOT USE):

- Three layers → bottom layer black/dark brown.
- Three layers → plus thin black/dark brown layer.

Pre-Vaccination Care

- Do not vaccinate sick birds.
- Avoid nasal vaccination in birds with respiratory problems.
- Store vaccine in **deep freeze**.
- Vaccinate all birds in a house at the same time.
- Supplement antibiotics in water/feed 3–4 days before vaccination.
- Never mix two vaccines to save time/labour.
- Use only distilled water for reconstitution.
- Vaccinate in the evening → birds can rest overnight.

Post-Vaccination Care

- Use anti-stress medicines for 3 days to reduce vaccination stress.
- Anti-stress medicines include:
 - Vitamins A & E
 - Probiotics
 - Antibiotics
 - Liver tonics
 - Glucose
- Administer through drinking water.
- In case of vaccine failure:
 - Give immunostimulants
 - Vitamins A & E
 - Selenium preparations
 - Probiotics

Causes of Vaccination Failure (Bird)

- Maternal antibodies
- Stress
- Birds may already be incubating disease
- Birds may be immunosuppressed
- Strong field challenge
- Waning of vaccine immunity

Maternal Antibodies

- High levels interfere with live vaccine virus multiplication.
- Reduce immunity development.
- Example: Chicks from hens with high IBD antibodies → maternal antibodies persist for weeks, inactivating vaccine virus.

Stress

- Stress suppresses immune response to vaccines.
- Sources of stress: overcrowding, poor nutrition, heat/cold stress, transportation, handling.
- Leads to weaker immunity despite vaccination.

Birds Already Incubating Disease

- If birds are already infected at the time of vaccination, vaccine response is poor.
- Vaccination cannot cure ongoing infections.
- Instead, disease progresses and masks vaccine effects.

Immunosuppression

- Birds with weakened immunity cannot mount a strong vaccine response.
- Causes:
 - Viral infections (e.g., Marek's, IBD).
 - Mycotoxins in feed.
 - Nutritional deficiencies.
- Results in poor antibody production postvaccination.

Strong Field Challenge

- High pathogen load in the environment can overwhelm vaccineinduced immunity.
- Vaccines reduce disease severity but may not prevent infection under heavy challenge.
- Emphasizes importance of biosecurity alongside vaccination.

Waning of Vaccine Immunity

- Immunity declines over time if booster doses are not given.
- Birds become susceptible again.
- Timely boosters are essential for sustained protection.

Automated Vaccination Systems

- In-ovo vaccination: Ensures early immunity.
- Automated injection systems: Accurate dosing, 3,500 chicks/hr.
- Spray systems: Effective for respiratory vaccines.
- Water-line systems:
 Simple, suitable for large flocks.

Benefits: Precision, reduced stress, improved efficacy, cost savings.

Combined Vaccines in Poultry

Definition

- Formulations containing antigens of two or more poultry pathogens in a single dose (e.g., ND + IB, ND + IBD, IBD + Marek's, etc.).
- Available as live attenuated (spray/drinking water) or inactivated oilemulsion vaccines.

Benefits

- Reduced handling stress: fewer injections/dosings for birds.
- Broader protection: multiple disease agents covered in one schedule.
- Cost efficiency: lower labour, logistics, and equipment usage.
- Synchronized immunity: coordinated protection against co-circulating diseases.
- Less flock disturbance: particularly important in commercial layer and breeder operations.
- Limitations to Note (optional if you want a balanced slide)
- Possible immune interference between antigens if not well-matched.

Challenges in Indian Context

- Vaccine failures due to improper storage or administration.
- Maternal antibody interference in chicks.
- Pathogen variability, especially in ND and Al strains.
- Economic constraints among smallholder farmers.
- Limited access to cold chain and quality vaccines in rural areas.

Top 10 Poultry Vaccine Importing Countries

Main suppliers: Italy, Indonesia and USA

Top 10 Poultry Vaccine Exporting Countries

No. of Shipments

Source: Volza.com

Main Importers: Afghanistan, Uganda, Kazakhstan, Kenya and Sri Lanka

Indigenous/native breeds evolved in different parts of India

Conclusion

- Vaccination is indispensable for Indian poultry sector.
- Science and technology are improving vaccine efficacy.
- Challenges exist in field implementation, economics, and policy.
- Integrated strategies with biosecurity and farmer awareness are essential for sustainability.