

Approach to integrated AMR surveillance framework

Pan-Africa Workshop on Effective Implementation of National Action Plan on Antimicrobial Resistance

January 22-24, 2020

Lusaka, Zambia

Rajeshwari Sinha

Deputy Programme Manager Food Safety and Toxins, CSE

Why there is a need for integrated antimicrobial resistance surveillance

Resistance has no boundaries

- Seamless flow of AMR determinants across humans, animals, food and environment
- Surveillance in any one sector will not give a true picture of AMR
- Understanding on source and sink, where it is amplified, where suppressed, what are the pathways

Different aspects of integration

- Across sectors: human, animal, food (plants and animals), environment
- Across AMR determinants (resistant bacteria, resistance genes, antimicrobial residues)
- Across AMR and antibiotic use

Generation of harmonized set of information out of surveillance efforts

Integrated AMR surveillance in global guidance

- Global understanding on the need for integrated AMR surveillance emerging
 - Country level examples
 - WHO-AGISAR, FAO, Codex
- Limited reflection through one guiding report on surveillance across all relevant sectors, including the environment
- Opportunities of cross learning and knowledge transfer between nations are growing

Zambia's integrated AMR surveillance framework

ZAMBIA'S INTEGRATED ANTIMICROBIAL RESISTANCE SURVEILLANCE FRAMEWORK

January 2020

Objectives

- To take Zambia's National Integrated AMR Surveillance Strategy a step forward and move from 'what to do' to 'how to do'?
- Put necessary focus sectors which are otherwise neglected – environment, plant
- Phased and progressive plan
- Based on ground realities, current status, available skills, resources, and infrastructure

Integration across

- human-health, food-animal, environment sectors
- resistant bacteria, antibiotic residues, antibiotic resistance genes

Zambia's integrated AMR surveillance framework (examples)

	Human-health	Food animals	Environment
Bacteria for AST	Select bacteria	Select bacteria	Indicator + sector specific bacteria
Antibiotics for AST			
Genetic markers			
Sample types	Blood, urine, faces	Swabs: air-sac, carcass, faecal	Sewage, effluent
Sampling sites	Hospitals, clinics	Farms, retail, abattoirs	Hospitals, farms, factories, community
No. of sampling sites per province			
Total no. of samples per province per year		300 250 for a new province	
Frequency of sampling			
AST interpretation method	CLSI	CLSI	CLSI
No. of labs/ networks	Expands across phases	Expands across phases	Third party support
Training required			

Learnings

- Integrated surveillance design is not as difficult as it looks to be
- Possibilities of convergence makes the implementation realistic; leads to greater buy-in
- A good understanding of baseline scenario is very useful
- Sitting together with multi-sectoral colleagues helps in an optimised design which is not only integrated but is also well informed, effective

Thank you

Amit Khurana
Programme Director
Food Safety and Toxins, CSE
k_amit@cseindia.org

Rajeshwari Sinha
Deputy Programme Manager
Food Safety and Toxins, CSE
s rajeshwari@cseindia.org

Divya Khatter
Programme Officer
Food Safety and Toxins, CSE
divya.khatter@cseindia.org