

My special appreciation goes to

Contents

- Climate Change
- The state of African Food Security
- African resources for Food Security
- Ethiopia: Climate change
- Ethiopia: Agriculture
- Ethiopian Climate Resilient Agriculture: the case of wheat
- The fate of Africa's Environment Report
- India: A rising superpower

1. Climate Change

The state of African Environment

Timelines of Climate Change			
Year	Event		
1896	Svante Arrhenius constructs the first climate model of the influence of atmospheric carbon dioxide (CO ₂)		
1920-25	Era of large-scale petroleum development begins with the opening of Texas and Persian Gulf oil fields.		
1930	Milutin Milankovitch publishes "Mathematical Climatology and the Astronomical Theory of Climatic Changes" to explain the causes of Earth's ice ages.		

1957	Roger Revelle and Hans E. Suess write that "human beings are now carrying out a large scale geophysical experiment" in a paper examining CO ₂ uptake by the oceans.
1970	Curve developed by American climate scientist Charles David Keeling begins to track atmospheric CO_2 concentrations. CO_2 concentration in 1960 315 parts per million (ppm).
1972	First evidence of chlorine chemicals being involved in ozone depletion is published.
1980	Keeling Curve: CO ₂ concentration in 1980 '337 ppm'.

1990	First Intergovernmental Panel on Climate Change (IPCC) report notes pattern past warming while signaling that future warming is likely.
1992	United Nations conference in Rio de Janeiro creates the UN Framework convention on Climate Change.
1997	Kyoto Protocol is created with the intent to limit greenhouse gas (GHG) emissions from industrialized countries. The U.S., the largest GHG emitter at the time, does not sign on.
2001	Third IPCC report
2005	Kyoto Protocol opens into effect. All major industrialized countries signed except the USA

2006	China becomes the leading
	world GHG emitter
2011	Canada withdraws from the
	Kyoto protocol
2020	Temperature target set in
	Cancun
2015	Paris Agreement

Ethiopia and Climate Change

- Ethiopia is one of the most vulnerable countries to climate change. Why?
- 1. The country is prone to droughts and floods
- 2. The majority of Ethiopians (80-85%) depend on agriculture and pastoralism for their livelihoods
- 3. Ethiopian agriculture is largely rainfed
- 4. Limited adaptation and mitigation capacity

able 1 thiopia's changing climate				
	Mean Annual Temperature	Mean Annual Rainfall	Extreme weather events	
1960 – 2006	Mean annual temperature increased by 1,3°C from 1960 2006 More hot days and nights, fewer cold days and nights	Highly variable from season to season, year to year, decade to decade No significant trend	Regular severe flooding and drought events No evidence of change in frequency or intensity of extremes	
2020s	+ 1,2 °C (range: 0,7 = 2,3°C)	+0,4%	Heavier rainfall events, Uncertain future El Nino behavior brings large uncertainties Flood and drought events likely to increase Heat waves and higher evaporation	
2050s	+ 2.2 °C (range: 1.4 - 2.9°C)	+1.1%		
2090s	+ 3,3 °C (range: 1,5 - 5,1°C)	Wetter conditions		

Drought/Famine in Ethiopia, 2022/23

Drought/famine in 2022/2023

- •13 million people targeted in 2023
- Located in the most affected areas of Bale, Borena, East Bale, Guji, West Guji (Oromia), Afder, Daawa, Liban (Somali), Konso and South Omo (SNNP)

Causes of drought/famine

- 1. Climate change
- 2. Limited adaptive and mitigation strategies
- 3. Insufficient food reserves
- 4. War and political instability
- 5. High prices of food
- 6. Low productivity

Can Ethiopia reduce the effect of Climate Change ALONE?

No

There is ONLY one solution!

The State of African Food Security

Food Security Index

However, Africa can Feed the World with the resources it has

Can sub-Saharan Africa (SSA) feed itself?

Martin K. van Ittersum *et al.* 2016. PNAS. 113 (52) 14964-14 969

Can sub-Saharan Africa (SSA) feed the world?

The Resources of Africa

Africa Economy by 2024

- Africa dominates list of the world's 20 fastest-growing economies in 2024 (ADB/WB)
- Report forecasts stronger growth for Africa in 2024, outpacing projected global average.
- Continent is second-fastest-growing region after Asia.

African Agricultural Continental Initiatives

Ethiopian Agriculture Landscape

Water Resources of Ethiopia

Ethiopian comparable area

- Ethiopia's land area is about 1.1 million square kilometers
- Combined area of the UK, France, and Germany is roughly 1.04 million square kilometers
- Roughly five times the size of the UK, almost twice the size of France, and three times the size of Germany.

Climate Smart Technologies: The case of Improved Crop Varieties Climate Smart Agriculture
Centre of Excellence for
Africa

CSA techniques ranking and adoption potential			
Rank	Technique	Adoption Potentia	
1	Crop Diversification & Improved Varieties	Very High	
2	Integrated Soil Fertility Management (ISFM)	High	
3	Water Harvesting & Efficient Irrigation	High	
4	Conservation Agriculture	Moderate to High	
5	Agroforestry	Moderate	
6	Improved Livestock Management	Moderate	
7	Integrated Pest Management (IPM)	Moderate to Low	
8	Digital & Climate Information Services	Low (but Rising)	

The Ethiopian Variety Release System

Achievement of Seven decades of crop breeding: Released/Registered Varieties until 2023 in Ethiopia

Crops	Released/Registered Varieties
Cereals	547
Pulses	297
Oil Crops	135
Tubers, Roots and Vegetables	332
Condiments and medicinal plants	64
Fruit Crops	54
Forage and Pasture Crops	83
Fiber Crops	45
Stimulant Crops (coffee, tobacco,cacao)	46
TOTAL	1603

Why released varieties are not largely adopted in Ethiopia, Africa?

Firew et al. Ethiopian Variety Releas

- 1. Limited awareness by the farmers
- 2. Mismatch with the need of farmers
- Breeders are not customizing traits of interest across the value chain in variety development
- 4. Variety suitability to meet the changing and future market demands
- 5. Weak popularization and demonstration of varieties-market driven extension system

et al. Ethiopian Variety Release

- 6. The seed sector is not responsive-weak seed information system (breederfoundation-certified seed)
- 7. Unavailability of quality seed
- 8.There is weak/disconnected market (domestic and international) chains
- 9. Access to finance
- 10. Policy and institutional gaps

rew et al. Ethiopian Variety Release System 88

What is the level of adoption of modern varieties in SSA?

Diffusion and Impact of Improved Varieties in Africa (DIIVA) project [Walker et al., 2014]

- 30 countries, 20 crops, 1150 varieties
- ≤ 35% modern variety adoption

Comparison of adoption of varieties by region

- Africa=35%
- Asia=60%
- South America=80%

Firew et al. Ethiopian Variety Release

Achievements and Impacts of Released
Varieties in Ethiopia:
The case of Bread Wheat and Maize

Bread Wheat- the Political Crop of Ethiopia

70 years of bread wheat improvement No. Number of Released Varieties Crops **New varieties** Released Released in 2023 before 2023 **Total** 1 Bread wheat 102 111 2 Durum wheat 1 43 44 3 Triticale 10 10 **Emmer wheat** 3 3 **Buck wheat** 1 1

	Whe	eat ado _l	otion stu	dies	
Crop	Estimated adoption rate	Indicators	Data collection method	Study year	Source
Wheat	62.5	HHs	National	2010	De Groot,
	52.8	HHs			2014
	62.0	HHs	East Wollega,	2014	Chilot et
	96.0	DNA finger printing	West Shewa and West Arsi		al, 2016b
	94.0	DNA finger printing	National	2017	Kindie et al
			pian Variety Release istem		98

Area coverage by variety age of bread wheat varieties

- Varieties less than six years old (2011-2016) since release cover 9% of wheat area
- Varieties aged between 6 to 10 years cover 38% of the wheat area
- Varieties aged between 10 to 20 years cover 25% of the wheat area
- Varieties aged above 20 years cover 27% of the wheat area
- Durum wheat covers <5% of the wheat area and 73% of this is covered by varieties older than 20 years

w et al. Ethiopian Variety Release

Bread wheat officiated the inception of ECGR (Ethiopian Crop Green Revolution)

•		Maize v	arict	163
Estimated adoption rate	Indicators	Data collection method	Study year	Source
31	HHs	National	2010	De Groot, 2014
55.9	HHs	East Wollega,	2014	Chilot et al,
61.4	DNA finger printing	West Shewa and West Arsi		2016b
90.0	DNA finger printing	National	2019	Moti et al
	adoption rate 31 55.9 61.4	adoption rate 31 HHs 55.9 HHs 61.4 DNA finger printing 90.0 DNA finger	adoption collection method 31 HHs National 55.9 HHs East Wollega, West Shewa and West Arsi 90.0 DNA finger National	adoption rate collection method 2010 31 HHs National 2010 55.9 HHs East Wollega, West Shewa and West Arsi 90.0 DNA finger National 2019

Crucial Issue: Development Interventions to harness varieties

I. Revolutionizing irrigation (small- to-large scale)the largest irrigated commercial farm in the world Firew et al. Ethiopian Variety Release System 115

Indicator Status and source National est. of smallholder farm power/ha Source of farm power Engine-driven source of power for major crops: wheat 15.7 % (MoA/ATA 2017) teff 0.02 % (MoA/ATA 2017) Engine-driven source of power: commercial farmers 60% (MoA/ATA 2017) Land prepared with tractors (all crops) Wheat harvesting 1.1 % of land in the country (Berhane et al. 2017) **Freed et al. 2017 (MoA/ATA 2017) **Traction of land in the country (Berhane et al. 2017)

