

JC Daniel & Salim Ali

K S Sankhala

R.W.Burton,Phythian-Adams, Morris, Stracey, E.P. Gee H.Abdulali, J.A. Singh,

Project Tiger

Tiger Task Force (1970) predicted that tiger will be extinct soon if hunting and poisoning will continue.

By 1972, about 1,827 tigers were alive.

Project Tiger was launched on 1st April 1973, with 9 Tiger Reserves as source populations.

Tiger population increased to \sim 3000 (Late 80's) and prey as well as habitat was secured.

Trade in Tiger Parts By the 1990s, tigers began to vanish rapidly.

Poaching for the traditional Chinese medicine trade had hit the Subcontinent, sparking what was being called "the second tiger crisis.

Sariska Tiger extinction caused wide scale criticism and Tiger Task Force was setup in 2005.

Beginning of new era for tiger conservation by changing old traditional beliefs of managing tigers.

Total forest cover in India at present is 21.7%. 5% area is Under Protected Area (870 PAs) Average size ~200 sq km

Nine reserves covered an area of 9,115 sq km in 1973 which increased to 50 Tiger Reserves covering 71,027.10 sq. km at present.

Average size ~1400

Till 2017 >Rs 500 crore were spent.

The extinction probability was estimated to be 26% (carrying Capacity = 15 tigers) with 1-2 tigers poached each year.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.9 0.8

0.7

0.6

0.5

0.4

0.3

0.2 0.1

survivorship Pprobability

Mining

Most mining districts have more than 30% of their area under forest

Average forest cover of the 50 major mineral producing districts is 28 per cent. The national average of forest cover in each state is 20.6%.

Tiger Extinctions

Poor Monitoring Mechanism

STATUS OF TIGERS IN INDIA-2018

967

Tiger Status Assessment & Monitoring

- Ratified by the Tiger Task Force (2005) &
- Peer Reviewed in 2006 by International Experts Appointed by IUCN
- 1. Ground Surveys
 - a. Carnivore
 - b. Prey
 - c. Habitat
 - d. Human Impact
 - 2. Remotely sensed data
- 3. Camera Trap data

Technological Advancements

CARNIVORE SIGN SURVEY

Record direct sighting with age & sex info Indirect signs

HERBIVORE DENSITIES

Record animal sightings with transect details Density analysis

5,22,996 km effort in 3,81,400 km² Forests surveyed 88,985 km² Tiger Occupied Area

• Tiger presence

Forest

Camera Trapping

26,838 CT locations 34,858,623 wildlife images 76,651 Tiger photo-captures

Tiger scat DNA based ID

Tiger photo-capture

Forest

Camera trap coverage

Artificial Intelligence & Machine Learning

- CaTRAT tool in MSTrIPES
- Auto-identification of species
- Archive photographs and metadata
- Output camera trap data for analysis of abundance.

State Ut	tarakhand		Division	Rajaji National Par 💌 Rar	nge Chilawali	+	Beat	Guleriasot	 Transect 	1 -	Replicate 1
Observer N	Name T	arun Singh	Date	: 02-02-2014 - Start	Time 0600 🗄	End Time	1000	🕆 Walk 2.2	▼ Transect E	learing _12.5	Weather Clear
Transect Fo	orest Type	Himal	ayan Moi 🔹	Transect Terrain Type	Undulating	•					
Start Lon End Long	igitude [gitude [77 938403 77 958903		Start Latitude 30.15430 End Latitude 30.16670	6	Check	Degre	egrees Minutes Sec e 30 Minute	onds 10 Second	De De	egrees Decimal Minutes
Use TAB B	Button of K	leyboard I	to navigate th	rough Grid					An	gular Distance is	in matera (m)
SI_No	Anima	I_Type	Time	Adult_with_young	Young_Seen	Forest_Ty	pe	Terrain_Type	Animal_Bearing	Angular_Dista	nce Remarks
1	Chital		0800	4	2	Himalayar	Mois_	Undulating	102.1	21.0	
2	Gaur		0830	5	4	Himalayar	Mois_	Undulating			
3 Barasingha		0915	6	4	Himalayan M	Mois_	Mois_ Valley	85.0	10.0		
1											

Machine Learning, Computing Power

METADATA				
Name	Panthera tigris			
Date time	17-03-2015; 08:51			
Lat	22.15.37.3			
Long	80.31.30.09			
Block id	006			
UID	2215986742852			

Fingerprinting Tigers

Software Program EXTRACT COMPARE

ExtractCompare V1.22

From 76,651 tiger images 2468 Tigers (excluding cubs) Identified

Population Estimation, Detect poaching & trade routes, Dispersal and Demography.

ninned stripes on wavelet decom

binary image using 'liquic Save extract

Double Sampling: Ground Samples & Camera Traps

522,996 km effort in 3,81,400 km²

26,838 CT locations 34,858,623 images 76,651 Tiger images 2967 Unique Tigers

Forest

Tiger scatlocation for DNA based ID

Camera traps with Tiger capture

Camera trap coverage

Forest

Largest Wildlife Survey Ever in the World

Joint Distribution Spatially Explicit Capture Recapture (SECR)

Tiger Populations and their Extents in India (2018-19)

National Tiger Status Assessments

Importance of Source Populations

Corbett TR Source in Western Shivalik-Gangetic Plains

Characteristics of Sources Good Prey Density High Density Tigers >> 100 Population Recruitment >>> Mortality High Turnover Rate At or close to Carrying Capacity

Creating Space for Tigers- Relocation of Habitation

Incentivized voluntary relocation @ Rs 1,000,000 / per adult

34,312 km² of Critical/ Core inviolate Areas legally mandated

Rs *10,000,000

14572 families Relocated from 180 villages

hani Dehradun 248001 Uttarakhand India

Inviolate Area

For 20 breeding tigresses -800-1000 km²

Total Population in the Core Tigers = Male 8 Cubs < 1 Year = 10 -15 Cubs 1-2 Year = 10 -15

Buffer $-1000-3000 \text{ km}^2$ 2-3 Year olds = 10 -15 3-4 Year olds = 10 -15 Old tigers & Surplus breeding age Tigers = 10-15

Tot Pop = 75 – 100 Tigers

Relevance of Core Size and Corridors for Metapopulaton

Melghat

59A

86

🌱 Tadoba

69

44

864

Landscape level planning

Kan

Achanakmar

12A

Optimal Development Strategies – Incorporating and Prioritizing Conservation, Sociological, & Econom Concerns on equal footing.

Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2012 Cnes/Spot Image © 2012 Google

34

@20

PREY BASE BUILDING.....

Prey Recovery

- □ Village relocation.
- □ Habitat management.
- Law enforcement.
- Ex. Kuno, Kanha, Pench, Madumalai, Nagarhole, Corbett.

Translocation

- Regaining lost species
- Upgrading protection.
- Prey Augmentation.
- Ex. Gaur reintroduction in Bandhavgarh.

Augmentation

- □ Mass breeding.
- □ Sustaining populations.
- Law enforcement.
- Ex. Barasingha Breeding Program at Kanha

Weed Invasion level

MSTrIPES For Law Enforcement & Monitoring

- Smart patrol
- Sensitization
- Law enforcement

- Systematic Monitoring
- Spatio-tempora changes
- Species managem

- Spatial conflict database
- Verification
- Mitigation & compensation

Modular program 3 Mobile apps, desktop and central server

Priority Tiger Conservation Areas

Populations having

- Demographic & Genetic
 Viability
 Potential Demographic
 & Genetic Viability
- Ecological Significance

Incorporates Source Population, Tiger Occupancy Potential, Forest Patch Size and Connectivity.

Future of Tiger Conservation

- Sustain and improve protection
- Maintain connectivity
- Improve habitat in ~40 Tiger Reserves
- Adopt Green infrastructure development program

Our objective is not to contrive glorified Safari Parks, for the tiger or for that matter our wildlife in general. Our endeavor, on the contrary, must be to retain the pristine or climax conditions of these areas with all the wonder and variety of its living forms, not just as a primordial relic of a distant past but as a dynamic and vital requirement for a quality of life that the most enlightened level of human thinking can conceive.

H.M Patel Union Minster and Chairman Steering Committee, Project Tiger

Need for Monitoring

Assess Success of Conservation Effort

Prioritize Conservation Investment

Ecologically Sustainable Development

Three publications which criticized All India tiger Monitoring

5.0 - 11-	a da la Fran		1	-			
Meth	oas in Eco	logy and Evo	olution	British Ecological Society			
Methods in Eco	ology and Evolution 2015, 6	6,1055-1066	doi: 10	.1111/2041-210X.12351			
An exa	mination of	findex-calibrat	tion experimen	its:			
counti	ng tigers at	macroecologi	cal scales				
Arjun M. Go and David	opalaswamy ^{1, 2, 3} *, W. Macdonald ¹	Mohan Delampady ⁴ , K. I	Jllas Karanth ^{2, 3, 5} , N. Sa	mba Kumar ^{2, 3}			
Journal of Aggicalmush, Biological and	Journal of Agricultur	al, Biological and Environmental 22, Issue 2, pp 111–139 Cite as	<u>Statistics</u>				
Environmental Statistics	Bayesian I	Methods for Est	imating Animal	Abundance at			
	Large Spatial Scales Using Data from Multiple Sour						
	Authors	Authors and affiliations					
	Soumen Dey, Mohan I	Delampady 🖂 , Ravishankar Para	meshwaran, N. Samba Kumar, Arj	un Srivathsa, K. Ullas Karanth			
Cor	nservation	Letters					
A journa	al of the Society for Con	servation Biology		Open Access			
VIEWPO	DINT						
Defer in Tie	Defensible Inference: Questioning Global Trends in Tiger Populations						
Abishek	Harihar ^{1,2} , Pranav Cha	anchani ^{3,4} , Milind Pariwaka	m ⁵ , Barry R. Noon ^{3,4} , & Johr	n Goodrich ¹			

Oxford Study 2015- Karanth & collegues

R2 (Karanth)=0.0001

R2 (Adjusted)=0.34

Improvement in relationship is 3400%

Fig. 5. Plot of the relationship between tiger sign encounter rates and estimated tiger densities from 8 different sites in India (from Karanth & Kumar 2005). The line represents the estimated regression line.

Recipe for cooking data

Scientific ethics code

- 1) Unrepresenti ve samples used
- 2) Misinterpreti ng results
- Selective reporting of data
- 4) Unsupported conclusion
- 5) Sensationalis ed headlines

Response: Mathematistry may get one in trouble if ecology is not in sight

Figure 1 The difference in the number of individual tigers photo-captured (x-axis) versus percent difference in estimated density (y-axis) using a maximum like inood spatially explicit capture-recapture formulation (MLSECR), between 2014 and 2010 at sites in India. Note that three sites, Kanha II_12), Pakke (I_24), and Nameri (I_25) Tiger Reserves, could not be directly compared as sampling frame in 2010 differed significantly at these sites. For site identification numbers, refer Table S2.

Harihar Interpretation: Larger the difference in tiger photocaptures higher will be the difference in density.

Observation: Larger the difference in number of tigers photocaptured smaller The difference in density.

More complex interaction going on which include capture probability and sampled area. Robust abundance method should be invariant to unique individuals captured. Harihar et al: Increase in trap nights results in increase in tiger population.

AITM: There is no relationship between (R²=0.11) trap nights and unique tigers captured.

Harihar et al: Increase in unique tigers will result in increased density.

AITM: There is no relationship between (R²=0.14) unique tigers captured and density.

TAMIL NADU

KERALA

Occupancy	Bayesian	AITM
Sites	205	861
Cell Area (sq km)	188	100
Walks	205	1,170
Length (km)	4174	49,900
Naïve Occupancy %	19.6	34.26
Detection Prob. %	17 (se 17)	39.2(se 0.89)
Estimated Occupancy	66	34.6
Area Covered (sq km)	38,540	49,900
Tiger area (sq km)	14,076	20,800
Camera Trap		
Units	71	230
Population	391 (se 57)	300 (se 20)
Sampling interval between occupancy and camera		
trapping	7 yrs	<1 yr

Legend

Probability of Tiger occupancy 0.01 - 0.25

> 0.25 - 0.50 0.50 - 0.75

> 0.75 - 0.90 0.90 - 0.99

Protected area boundary State boundary Corridor **District boundary**

Tiger Sources & Potential Habitats

- Source Population within each landscape with Habitat Connectivity essential for longterm Tiger Survival
- Habitat available for expanding Tiger
 Population : requires
 conservation
 investments

