

## Diesel Exhaust Fluid (DEF) for SCR equipped Heavy Duty Vehicles (BS IV & BS VI)

#### P. Sakthivel

Senior Manager (Automotive Research)
Indian Oil Corporation Limited,
R&D Centre, Faridabad



#### **Outline of the Presentation**

- Quick Facts on DEF
- > Emission norms
- NOx emission Formation and control
- > SCR Technology
- > AUS-32 / DEF Quality Requirements
- Production of DEF Raw materials
- Quality Control test methods
- > Storage of DEF
- > IOC ClearBlue



### **DEF – Quick Facts**

#### One Product – Three Names – DEF; AdBlue; AUS32

- ✓ Helps in Reducing NOx emissions by >90% in SCR catalytic converter
- ✓ Required in vehicles (trucks & buses) having SCR.
- ✓ DEF is safe to handle, Not toxic, Not flammable, Not hazardous.
- It is not a fuel additive, so Not to be added with diesel
- Urea used for DEF is not a fertilizer urea, it is made of special grade Urea
- ❖ DEF is not supplied to engine, it is sprayed in to the exhaust pipe prior to SCR



### **Heavy Duty Emission Norms**

| (WHTC – World Hormonized Transient Cycle) (ETC – Engine Transient Cycle) |                   |               |                |                 |                | % Emission Reduction |    |    |     |     |    |
|--------------------------------------------------------------------------|-------------------|---------------|----------------|-----------------|----------------|----------------------|----|----|-----|-----|----|
| Emission<br>level                                                        | Test<br>procedure | CO<br>(g/kWh) | CH4<br>(g/kWh) | NMHC<br>(g/kWh) | NOx<br>(g/kWh) | PM<br>(g/kWh)        | со | НС | NOx | PM  |    |
| BS IV                                                                    | ETC               | 4             | 1.1            | 0.55            | 3.5            | 0.03                 | 0  |    | FF  | 0.7 | 67 |
| BS VI                                                                    | WHTC              | 4             | 0.5            | 0.16            | 0.46           | 0.01                 |    | 55 | 87  | 67  |    |

Other Limits introduced in BS VI: PN- 6.0 x  $10^{11}$  #/kWh; NH<sub>3</sub> - 10 ppm

- Both BS IV and BS VI Heavy duty emission norms are fuel neutral
- Moving to BS VI, NOx emission to be reduced by 87%
- HC and PM emissions are also to be reduced simultaneously



#### **NOx Emission Formation**





Composition of Air : Nitrogen  $(N_2)$  – 79% and Oxygen  $(O_2)$  – 21%

- **Nitrogen**
- Oxygen
- High in-cylinder temperature during combustion (>1500 °C)



#### **How to reduce NOx Emissions**



#### **Exhaust Gas Recirculation (EGR)**



#### Issues with EGR alone NOx control technology in BS VI regime

- High level of reduction in NOx emissions is not feasible
- Increase in PM emissions and Engine oil contamination
- Reduced life of the engine



#### What is SCR?



SCR equipped vehicle offer typically 5% improved fuel economy since it allows engine to operate at high engine-NOx conditions where thermal efficiency is much high.



**Exhaust** 

#### What is SCR?

#### **Selective Catalytic Reduction - (Exhaust Gas After-treatment)**



**Ammonia Slip Catalyst** 

(To convert Ammonia to N2)



#### What is SCR?



Main components of Bosch Denoxtronic urea injection system
A: Supply module; B: Dosing module; C: Injection nozzle



Consumption of AUS32 in vehicle → ~ 5% of diesel consumption

**Source: DieselNet** 



### What is DEF?

AUS-32 → Technical name

Aqueous Urea Solution containing urea of 32.5% by weight

- Other names
  - ➤ AdBlue Trademark of VDA (German Automobile Manufacturers Association)
  - ▶ DEF Commonly called as Diesel Exhaust Fluid (DEF) in countries like USA and others
- Quality standards

> DIN 70070 : 2005

➤ISO 22241 : 2019

➤ IS 17042 : 2018



### **AUS 32**

# **Quality Requirements as per ISO 22241-1**

| Urea content                 |      | 31.8 – 33.2            | % by weight |
|------------------------------|------|------------------------|-------------|
| Alkalinity as NH3            | max. | 0.2                    | % by weight |
| Biuret                       | max. | 0.3                    | % by weight |
| Insolubles                   | max. | 20                     | mg/kg       |
| Aldehyde                     | max. | 5                      | mg/kg       |
| Phosphate (PO <sub>4</sub> ) | max. | 0.5                    | mg/kg       |
| Aluminum                     | max. | 0.5                    | mg/kg       |
| Calcium                      | max. | 0.5                    | mg/kg       |
| Iron                         | max. | 0.5                    | mg/kg       |
| Copper                       | max. | 0.2                    | mg/kg       |
| Zinc                         | max. | 0.2                    | mg/kg       |
| Chromium                     | max. | 0.2                    | mg/kg       |
| Nickel                       | max. | 0.2                    | mg/kg       |
| Magnesium                    | max. | 0.5                    | mg/kg       |
| Sodium                       | max. | 0.5                    | mg/kg       |
| Potassium                    | max. | 0.5                    | mg/kg       |
| Density at 20°C              |      | 1087.0 - 1093.0        | kg/m3       |
| Refractive index at 20       | )°C  | 1.3814 - 1.3843        | (-)         |
| Identity                     |      | identical to reference | (-)         |



#### Why Quality of DEF is atmost important?

## Use of Contaminated / Off-spec DEF will lead to following issues

- Deposit formation in urea supply and dosing system
- Blockage of Injector nozzles
- Catalyst poisoning leading to permanent damage or reduction in efficiency
- Loss of warranty for SCR system
- Fitness approval issue
- Polluting the environment heavily



#### What is DEF?

#### **Raw Materials**

Definition as per ISO 22241:2019

- Technically pure urea
  - Industrially produced grade of urea with
  - Traces of biuret, ammonia and water only,
  - Free of aldehydes or other substances such as anticaking agent, and
  - Free of contaminants such as sulphur and its compounds, chloride, nitrate or other compounds
- Pure water
  - Water very low in inorganic, organic or colloidal contaminants, produced, for example, by single distillation, by deionization, by ultra-filtration or by reverse osmosis



## **Production of DEF**



Technically Pure Urea



**Water-Treatment cum Blending Unit** 



**Storage & Dispenser** 



## **DEF Test Methods and Test Equipment**

| Characteristics          | Test Method            | Measurement Method                       | Equipment                                                                  |  |
|--------------------------|------------------------|------------------------------------------|----------------------------------------------------------------------------|--|
| Urea                     | ISO 22241-2 Annex B    | Total nitrogen Method                    | Automatic nitrogen analyser                                                |  |
| Density at 20°C          | ISO 3675 or            | Specific gravity method or               | Glass hydrometer or                                                        |  |
| Delisity at 20 C         | ISO 12185              | Oscillation frequency method             | U-tube density meter                                                       |  |
| Refractive index at 20°C | ISO 22241-2 Annex C    | Refractive index **                      | Refractometer                                                              |  |
| Alkalinity as NH3        | ISO 22241-2 Annex D    | Potentiometric titration of free ammonia | Potentiometer                                                              |  |
| Insolubles               | ISO 22241-2 Annex G    | Gravimetric method                       | Analytical balance                                                         |  |
| Biuret                   | ISO 22241-2 Annex E    | Photometric method                       |                                                                            |  |
| Aldehyde                 | ISO 22241-2 Annex F    | Photometric method for Formaldehyde      | Spectrophotometer                                                          |  |
| Phosphate (PO4)          | ISO 22241-2 Annex H    | Photometric method or                    | Spectrophotometer / ICP                                                    |  |
| Phosphate (PO4)          | ISO 22241-2 Allilex II | Spectrometry Method                      |                                                                            |  |
| Calcium                  |                        |                                          |                                                                            |  |
| Iron                     |                        |                                          |                                                                            |  |
| Copper                   |                        |                                          |                                                                            |  |
| Zinc                     |                        |                                          | Inductively Coupled Plasma-<br>Optical Emission<br>Spectrometer (ICP-OES). |  |
| Chromium                 | ICO 22244 2 Ammon I    | Consistence of the consistence of        |                                                                            |  |
| Nickel                   | ISO 22241-2 Annex I    | Spectrometry Method                      |                                                                            |  |
| Aluminium                |                        |                                          |                                                                            |  |
| Magnesium                |                        |                                          |                                                                            |  |
| Sodium                   |                        |                                          |                                                                            |  |
| Potassium                |                        |                                          |                                                                            |  |
| Identity                 | ISO 22241-2 Annex J    | IR spectrometry                          | IR spectrometer or FTIR                                                    |  |

<sup>\*\*</sup>Refractive index method can also be used for urea content



## **On-site Quality Check**





Handheld Digital Refractometers for on-site quality check



## **Storage of DEF**

#### ISO 22241-3

| Constant ambient storage temperature, °C | Minimum Shelf Life<br>Months                            |
|------------------------------------------|---------------------------------------------------------|
| ≤ 10                                     | 36 (3 years)                                            |
| ≤ 25                                     | 18 (1 ½ years)                                          |
| ≤ 30                                     | 12 (1 year)                                             |
| ≤ 35                                     | 6                                                       |
| > 35                                     | Significant loss of shelf. Check every batch before use |



## **Storage of DEF**

#### **Material for DEF containers: Stainless Steel / HDPE**

ISO 22241-3

#### Metals

- ✓ Stainless Steel, eg. UNS S30400, S30403, S31600, S31603, S31625 and S32100.
- ✓ Titanium
- √ Hastelloy C-276

#### • **Polymers** (free of additives that affect SCR system)

- ✓ Polyethylene (PE)
- ✓ Poly popylene (PP)
- ✓ Polyisobutylene (PIB)
- ✓ Perfluoroalkoxy alkane (PFA)
- ✓ Polyfluoroethylene (PFE)
- ✓ Polyvinyllidene fluoride (PVDF)
- ✓ Polytetrafluoroethylene (PTFE)
- ✓ Copolymers of PVDF and hexafluropropylene (HFP)



## **DEF Packaging**



**10** L



**IBC - 1000 L** 



**20** L



200 L



Flexi Tanks 20 KL



## **Storage of DEF**

#### **Freezing of DEF**

- DEF freeze at -11°C
- 32.5% urea concentration is optimum and provides lowest freezing point
- No anti-freeze agents to be added in AUS 32
- Quality of AUS 32 does not degrade due to freezing
- Solidified DEF has an approximately 7% larger volume than the liquid
- Packaging need to take care additional volume increase of AUS 32 in case of freezing (Freeze-proof design).
- Vehicles are generally equipped to handle freezing issues of AUS 32

#### **DEF @ IndianOil**

## **IOC ClearBlue**

- 1st DEF Plant commissioned at Manesar, haryana in Nov 2019.
- The capacity of the plant is 30,000 KLPA
- Three more such plants are being setup.
- Five more such plants have been planned.
- IOC ClearBlue meets the ISO Specifications and audited by VDA
- All the test facilities available with IOCL for quality assessment of DEF as per ISO 22241 requirements



## **IOC ClearBlue**

#### **Distribution**

- From IOCL Stockiest to Bulk consumer sites (eg. MSRTC)
- From IOCL stockiest to Retail Outlets

#### **Collaboration**

- Technical grade urea suppliers
- Plant equipment manufacturers
- DEF suppliers
- Auto OEMs



## **10C ClearBlue**



Signing of Agreement with Cummins Technologies for bulk dispensing of IOC ClearBlue



Release of 1<sup>st</sup> batch of IOC CLEARBLUE from DEF Plant, Manesar



## **IOC ClearBlue**



Fill Right Quality DEF while you fill Right Quality Diesel





# COMPLETE FLUID SOLUTION @ YOUR DOORSTEP

#### For queries, Please contact

Dr Reji Mathai (mathair@indianoil.in)
Chief General Manager (TPF)
Indian Oil Corporation Limited,
R&D Centre, Faridabad

Mr Zubeen Garg (zubingarg @indianoil.in)
DGM I/c (Institutional Business)
Indian Oil – Marketing Division
MH State Office, Mumbai

