The outbreak of COVID-19 has placed a need to rethink the way we approach our built environment. Mooted in the India Cooling Action Plan 2019, thermal comfort emerges as a crucial parameter due to its linkages with liveability and health. Temperature, humidity and natural ventilation are key characteristics that define thermal comfort and at the same time have a direct relationship with the spread of COVID-19 infection in dwellings. This stresses the need to look at site layouts, building design and choice of materials for mainstreaming thermal comfort not only as an enabler of liveability but also as a catalyst to reduce the disease burden in our buildings.

Currently, an explicit focus on thermal comfort is missing from the buildings. This shoots up the operational energy cost for the beneficiary burning a hole in their pockets due to inflated energy consumption which lasts for the entire lifetime of the building. ‘Passive design principles’ such as correct orientation, building geometry, material choices, shading devices etc. can reduce a building’s reliance on active lighting, heating, ventilation and air conditioning systems and bear energy saving potential of about 40 per cent.

The government of India incentivizes and mandates these techniques through measures like Environmental impact assessment, Energy Conservation Building Codes, model building bye-laws etc. Centre for Science and Environment (CSE) offers this course to familiarize participants with designing principles and technologies to reduce resource footprint (energy, water and waste) in the built environment. The course will enable participants to understand the working of all natural elements coming together for sustainable building design practices.

SALIENT FEATURES OF THE TRAINING COURSE:
- Sustainability Development Goals
- Planning and design amidst the new normal of COVID-19
- Environmental governance for built sector with focus on codes and impact assessment
- Energy Conservation Building Codes
- Human thermal comfort
- Resource prudent designing for circularity: (Water, Waste, Energy)
- Understanding building envelope and its material properties
- Daylighting and its components
- Hands on daylighting simulation exercise
- Introduction to passive and low-energy mechanical cooling techniques
- Case Studies of live Government Affordable Housing projects

WHO CAN APPLY
Architecture, planning and engineering students, architects, academicians and professionals from built environment.

COURSE CHARGES
₹3000 per participant.

FOR DETAILS CONTACT:
Sugeet Grover, Programme Officer, Sustainable Buildings and Habitat Programme
Centre for Science and Environment, Core 6A, Fourth Floor, India Habitat Centre, Lodhi Road, New Delhi-110003
Ph: 91-011-2464 5334 / 5335 (Ext. 116), Mobile: 9818443366
Email: sugeet.grover@cseindia.org