

NATIONAL CONCLAVE

SUSTAINABLE FOOD SYSTEMS

October 27-29, 2025
Anil Agarwal Environment Training Institute, Nimli, Rajasthan

Livestock Mitigation and Adaptation (Session 4: GHG Emissions from Livestock and Mitigation Options)

Climate-smart Dairying: NDDB's Initiative and its Impact

Bhupendra Phondba National Dairy Development Board, Anand

Dairying in India

80 million rural households - nutritional security to 1.4 billion people

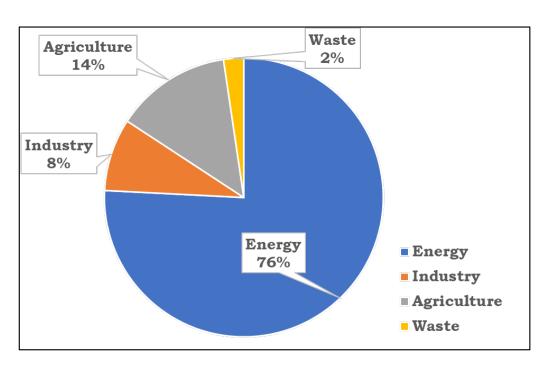
Milk production: **240 million tonne** (2023-24) i.e. **25%** of global production

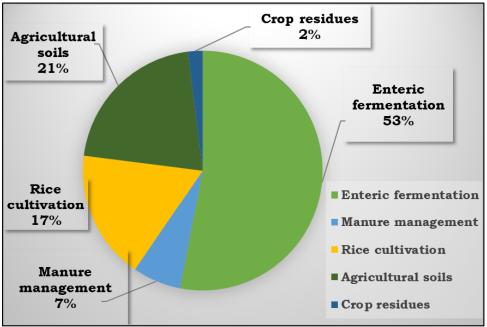
Per capita availability: 471 g/day

(world average: 315 g/day)

Production growth: **6% per annum** (3 times higher than global average)

Single largest agricultural commodity (value of output > combined value of cereals & pulses)


Smallholder system: average herd size is 2-3 animals

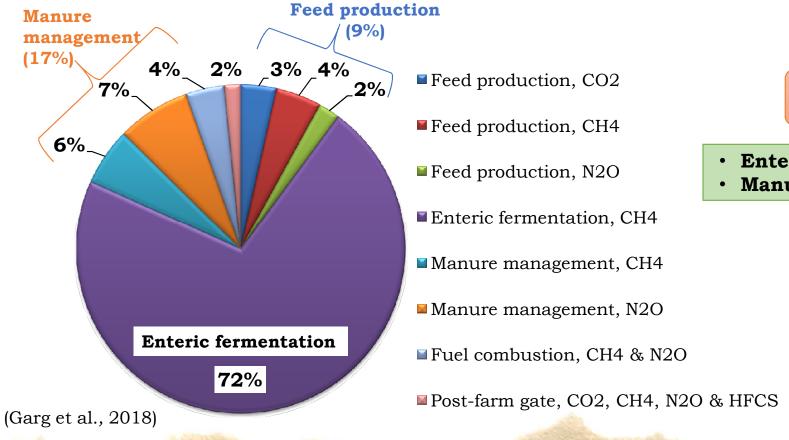


India: GHG emissions by sectors

Emissions by agriculture sector

Total GHG: 3.13 Gt CO₂-eq./year

Livestock GHG: 0.25 Gt CO₂-eq./year


Enteric fermentation: 89% Manure management: 11%

(MoEFCC, 2023)

GHG emissions by the Indian dairy sector

GHG Hotspots

- Enteric Methane (72%)
- Manure Management (17%)

NATIONAL CONCLAVE ON SUSTAINABLE FOOD SYSTEMS

Initiatives for Climate-smart Dairying

1. Scientific Feeding

- Ration Balancing
- Total Mixed Ration
- Forage Improvement
- Methane Inhibitors

2. Manure Management

- Decentralized models
- Centralized models

3. Productivity Enhancement

• Genetic Improvement

1. Ration Balancing Programme

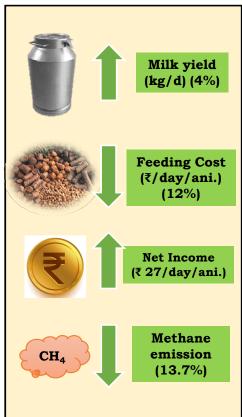
Proof of Concept

Large-scale Implementation

Impact

Feeding Balanced Ration

2.8 million



2.2 million

- National Dairy Plan-I (2012-19)
- · National Digital Livestock Mission
- A-Help Programme

Doorstep Ration Advisory

- Japan International Cooperation Agency (JICA)
- Cooperatives, NGOs, Private organisations

NATIONAL CONCLAVE ON SUSTAINABLE FOOD SYSTEMS

Impact of RBP on milk productivity, livelihood and methane emission

Parameter	Before RB	After RB	Change
Average milk production (kg/animal/day)	7.06	7.33	+0.27
Average fat % in milk	4.69	4.77	+0.08
Average cost of feeding (Rs./kg milk)	19.44	17.15	-2.29
Average cost of feeding (Rs./animal/day)	135.10	118.81	-16.29
Increase in net daily income (Rs./animal)			+27.26
Reduction in feed cost per kg of milk			11.80%

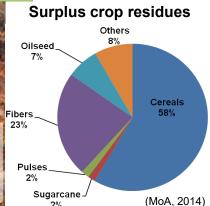
RB: Ration Balancing

NATIONAL CONCLAV

Methane measurement using $\mathbf{SF_6}$ Tracer Technique

> 13.7% reduction in methane emission

Crop Residue Burning



Reasons:

- Less time window (Paddy-Wheat)
- Labour shortage
- · High cost of removal
- Mechanized harvesting
- Lack of mechanism for straw management

Crop residue generation: **502 MT/ year**Crop residue burned: **84-140 MT/ year**

2. Total Mixed Ration (Dry-TMR)

- **Conventional feeding system:** Feed ingredients offered separately (nutrient imbalance)
- **Dry-TMR:** Densification and enrichment of crop residues (mixing with concentrates & feed supplements)

TMR Block

Dry-TMR types

- Early Lactation (16% CP, 35% straw)
- **Mid Lactation** (13% CP, 45% straw)
- Late Lactation (11% CP, 55% straw)

Establishment of Dry-TMR plant:

- Supported milk unions for establishment of two plants for production of dry-TMR blocks/pellets (50 tonne/day).
- About **3000 tonne crop residue** is utilised to produce 8000 tonne dry-TMR/year.

Total Mixed Ration (Conventional TMR)

Impact of TMR feeding

12%

Increase in **milk yield** (10.71 vs. 11.94 kg/d)

11%

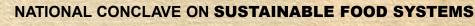
Increase in **milk fat** (3.81 *vs.* 4.24 %)

With silage

(60% silage, 20% dry fodder, 20% concentrate)

11%

Reduction in **CH₄ Ei** (16.3 vs. 14.5 g/kg milk)


With green fodder

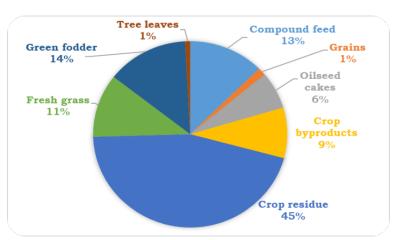
(70% green fodder, 10% dry fodder, 20% concentrate)

36%

Increase in **net daily income** (₹ 104 *vs*. 142/animal)

(45% DM, 13% CP, 39 Mcal ME)

Particulars	Before TMR feeding	After TMR feeding	Change
Milk yield (kg/day/animal)	10.71	11.94	12%
Average Fat %	3.81	4.24	11%
Average SNF %	8.40	8.61	2%
Average protein %	3.04	3.17	4%
Feeding cost (Rs/day)	299	327	9%
Total income form sale of milk (Rs/day)	403	469	16%
Net daily income (Rs/animal)	104	142	36%
Increase in net income (Rs./day/animal)			<mark>38.0</mark>


> 11% reduction in methane emission (16.3 vs. 14.5 g/kg milk)

3. Forage Production and Ration Quality

Ingredient composition of Rations

16 R² = 0.6646 R² = 0.6646 R² = 0.6646 R³ R² = 0.6646 R³ R² = 0.6646

Ration composition & quality:

NDF <u>required</u>: **32-33%** vs.

NDF fed: 45-50%

NDF: Neutral Detergent Fibre

- Measure of plant cell wall content of feed
- Indicator of feed quality
- Help determine the digestibility
 - Every 1% increase in feed digestibility results in 2-3% reduction in enteric methane emission.

Incorporate cereal and legume fodders in ration of animals to improve digestibility.

Fodder Production Enhancement

- National Livestock Mission
- Certified seeds (30% higher yield)
- Facilitating fodder seed production (22.4 thousand tonne, 2021-22 to 2024-25)
- ▶ 100 Fodder Plus FPOs
 - Organized fodder & silage supply chain
- Year round fodder production & Conservation

NATIONAL CONCLAVE ON SUSTAINABLE FOOD SYSTEMS

4. Enteric Methane Inhibitors

Sr.	Mode of action	Examples	
1	Inhibition of methanogens/protozoa	TanninsSaponinsPolyphenol extractsEssential oils	
2	Buffers/Hydrogen sink	MicroalgaeNitrateMalate	
3	Terminal methane inhibitors/methane analogue	 3-Nitrooxypropanol Red macroalgae (Asparagopsis spp.) 	
4	Rumen modifiers	Live yeastSlow-release Nitrogen	

Methane mitigation potential of inhibitors: 5 to 37%

- Many methane inhibitors are available but no single inhibitor has dual benefits (milk productivity and methane mitigation).
- Dairy farmers require methane inhibitors that can improve milk productivity as well as reduce methane emission.
- NDDB's applied research identified suitable inhibitors with 18-20% methane mitigation potential.
- Animal studies to be initiated.
- To be included in compound feed/ TMR or direct supplementation.

Manure Management

☐ Disadvantage of conventional manure management system

- Direct N loss
- NH₃ volatilization air pollution
- Nitrate leaching water pollution
- Loss of organic fertilizer (NPK)
- Methane emission (GWP₁₀₀: 27)
- N_2O emission (GWP₁₀₀: 273)

Innovative Manure Management Models

Decentralized models

Zakariyapura Model

Household level biogas based Manure Value Chain model sufficing cooking energy and organic fertilizer needs of farmers

2 cubic meter (3-4 animals/farm)

Mid-size Model

Designed for large farms/
Gaushalas to produce
renewable energy and
organic fertilizer from
manure

40 cubic meter (80-100 animals/farm)

Banaskantha Model

Centralized models

Dung based large capacity biogas plant to produce CBG and organic fertilizer

2000 cubic meter (~100 farms)

Varanasi Model

Dung based large capacity biogas plant to suffice steam and power needs of dairy plants, and produce organic fertilizer

4000 cubic meter (~150 farms)

1. Decentralized (household level) – Zakariyapura Model

- Mujkuva village (37 plants)
- Zakariyapura village (368 plants)
- Model replicated in 9 states (35,000 plants)
- India's 1st Woman owned Manure Cooperative

- Mitigation: 3-5 tonne CO₂e/plant/year (manure & fuel)
- **40**% reduction in manure GHGs
- **7-8%** reduction in farmgate carbon footprint

☐ Anaerobic digestion of manure

- 50 kg dung/day (3-4 animals)
- 2 cubic meter biogas/day
- Captures most of the methane
- Biogas as a renewable energy
- Digestate valuable bio-fertilizer
- Avoids CH₄ and N₂O emissions
- Saving of LPG and firewood

□ Farmgate GHGs (t CO₂e/year) & Carbon Footprint (kg CO₂e/kg FPCM)

	Solid Storage	Anaerobic Digester	Avoided GHGs
Manure GHGs	2.33	1.40	0.93 (40%)
Farm GHGs	14.74	13.68	1.05 (7.2%)
Carbon footprint	1.96	1.81	7.6%

2. Decentralized (farm level) - Large farms/ Gaushalas

Integration of sustainable farm management practices

- 80-100 animals/farm
- 800-1000 kg dung/day
- · 40 cubic meter biogas/day
- 35-40 kWh electricity/day
- 150-200 kg organic fertilizer/day
- GHG mitigation: 10.5 t CO2e/year

GHG emissions (t $CO_2e/year$) of mid-size farm

Particular	Baseline scenario	Improved scenario*	Avoided GHGs
Enteric CH ₄	103.8	103.8	
Manure CH ₄	7.46	6.85	0.61 (8.2%)
Manure N ₂ O	12.55	4.88	7.67 (61.1%)
Electricity CO ₂	12.2	10.0	2.2 17.5 %
Total GHG	136.0	125.5	10.5 (7.7%)

^{*} Biogas plant & renewable energy (electricity), at NDDB, Anand

3. Centralized (milk union level) - Banaskantha model

Established at Banaskantha Milk Union (Gujarat State)

- Utilize 40 tonne dung/day
- 2000 cubic meter biogas plant
- Biogas is purified and compressed to produce **CBG** for vehicles
- Mitigation: 2,400 tonne
 CO₂e/year
- Model is being replicated across
 Banaskantha (4
 plants), Amul, Sabar & Dudhsagar
 dairies.

4. Centralized (milk union level) - Varanasi model

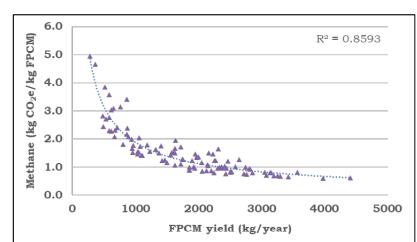
Established at Varanasi Milk Union (Uttar Pradesh State)

- About 100 tonne dung/day
- **4000 cubic meter** biogas plant
- Biogas is used to meet thermal and electrical energy need of dairy plant
- Organic fertilizer production from digested slurry
- Mitigation: 3,000 tonne CO₂e/year
- Model is being replicated at Barauni dairy (Bihar) and is under discussion with OMFED (Odisha).

Partnerships with stakeholders

- 1. Suzuki R&D Centre India (SRDI) promote dung utilization and enhance rural mobility through biogas-based clean energy (NDDB & NDDB Mrida Ltd).
- 2. Dairy Cooperatives NDDB signed MoUs with 25 coops to replicate manure management models in 15 states (March 2025).
- **3. Financial Incentivization Scheme by NDDB** To accelerate adoption of sustainable practices
- **4. NABARD & NDDB** towards sustainable and climate-resilient dairy sector.
- **5. Sustain Plus Energy Foundation (SPEF)** Decentralized renewable energy solutions and scientific manure management practices. Monetization of **carbon credits** for 1,040 smallholder biogas beneficiaries (11,395 Verified Carbon Units by VERA)
- **6. NDDB Mrida Ltd.** Climate financing mechanism under the 'Gobar Se Samriddhi' programme.

Enables wider **adoption of biogas**, promote **clean energy**, enhance rural **livelihoods**, and **reduce GHG emissions**



Improved Genetics - Productivity Enhancement & Methane Mitigation

☐ Productivity Enhancement:

- Performance recording programmes (PT & PS)
- Genomic chips (GAUCHIP and MAHISHCHIP)
- **GouSot**[™] Indigenous semen sex-sorting technology
- IVF & Embryo Transfer

☐ Genetic Selection (long term mitigation strategy)

- Methane emission (low to moderate heritability, 0.10 0.45)
- Methane measurement using standardized portable devices (lactating animals under genetic improvement programmes)
- Estimate Genomic Breeding Value to facilitate **bull selection** capable of producing daughters with less methane emission
- About **8-10% mitigation potential** (10 years timeframe)

Key message

- Adoption of scientific feeding and manure management practices by smallholder farmers would help reduce GHG emissions up to 20 to 25%.
- **Scope for additional mitigation** (improving ration quality, use of feed additives, selection of animals for low methane emission etc).
- Dairy farmers needs to be supported through appropriate policy framework, incentive mechanism for taking mitigation action, climate finance, awareness and extension programmes.

