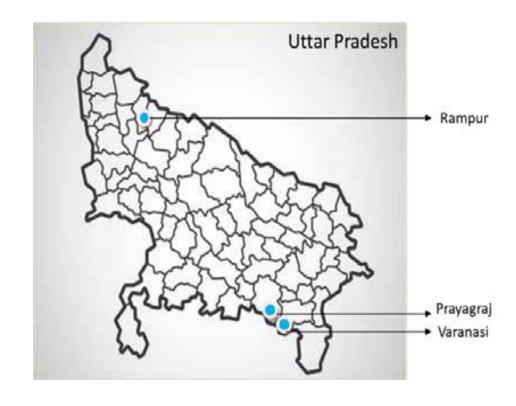

UP- Biosolids Challenges, Combat and Reuse


Rajarshi Banerjee
Environment Monitoring Laboratory,
AAETI

FSTP/ Co Treatment Plants Evaluated

FSTPS: 9 Co Treatment: 3

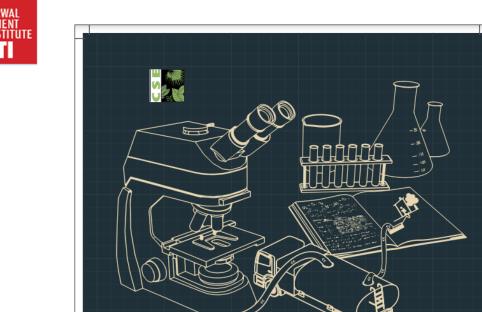
Challenges...

FSTP/Location	Primary Biosolids Challenges		
Bakshi Ka Talab	Very high levels of pathogens (including Helminths and <i>E. coli</i>), severely compromising safety despite achieving very low moisture content. Low pH (5.6), slightly below the FCO minimum (6.0–8.5). High C:N ratio (22.9), above the optimal range.		
Bahraich	Extremely high levels of pathogens. High C:N ratio (26.9), indicating potential nitrogen immobilization. Elevated Zinc levels.		
Chunar	High levels of pathogens.		
Farrukhabad	High levels of pathogens Elevated levels of heavy metals: Chromium and Zinc exceeded FCO limits		
Jaunpur	High levels of pathogens. Moisture content (29.0%) exceeds the FCO standard (<25%).		
Khurja	High levels of pathogens. Moisture (27.55%) slightly above FCO limit. Elevated heavy metals: Zinc (2560 mg/kg) and Copper exceeded FCO limits. High C:N ratio (22.8).		
Banda	High levels of pathogens. Elevated heavy metals: Mercury, Zinc, and Copper.		
Raebareli	High levels of pathogens. Elevated heavy metals: Mercury, Zinc, and Copper. High C:N ratio (22.8).		
Jhansi (6+12 KLD)	Exceptionally high levels of pathogens (including Helminth eggs, 250 eggs/4g). High moisture content (32.29%).		
Jhansi (32 KLD)	High levels of pathogens. High heavy metals: Mercury (4.17 mg/kg) and Copper. Moisture content (30.64%) exceeds FCO standard.		
Prayagraj (Co-TP)	High levels of pathogens; excessive levels of pathogens (Helminths 2355 eggs/4g). High moisture content (62.78%), Zinc levels approaching FCO limits.		
Rampur (Co-TP)	High levels of pathogens. Critical heavy metal contamination: Chromium (191.42 mg/kg) exceeded FCO limit significantly. High moisture (57.66%)		
Varanasi (Co-TP)	High levels of pathogens (Helminths 3574 eggs/4g). High moisture (39.35%) content. High Critical heavy metal		

How to Correct the Challenges?

- 1. Enhancing Drying and Moisture Control (Addressing moisture and related pathogen regrowth)
- Improve Drying Infrastructure: covered drying beds or mechanical drying units
- Optimize Sun Drying Practices: Ensure adequate drying periods and implement frequent turning of the sludge beds to promote uniform evaporation.
- **Pulverization:** Shred or pulverize the dried biosolids cake into smaller particle sizes to increase surface area
- 2. Implementing Rigorous Pathogen Inactivation (Addressing Helminths, *E. coli*, *Salmonella*)
- Adopt Advanced Stabilization Techniques: Implement techniques beyond passive sun drying, such as thermophilic composting, pasteurization (heat treatment), or lime stabilization (raising pH >12)
- Ensure Proper Storage: Utilize closed storage rooms to preserve dried biosolids

- 3. Controlling Heavy Metal Contamination (Addressing Cr, Hg, Zn, Cu)
- Source Control: Identify and control upstream contributors of industrial or commercial waste
- **Specialized Treatment:** Explore techniques as stabilization, chemical precipitation, or specialized thermal/chemical treatment.
- 4. Optimizing C:N Ratio (For enhanced agricultural value)
- For sites exhibiting a high C:N ratio (e.g., Bahraich, Khurja, Raebareli), incorporate **carbon-rich materials** (like sawdust, dry leaves, or other organic waste) during stabilization or co-composting to bring the ratio into the optimal range of 15:1 to 20:1.



Where to put the Biosolids?

Potential Use Category	Specific Restricted Applications	Quality Consideration
Agricultural/Soil Conditioning	Cash Crops: For crops consumed after processing or non-edible crops (e.g., cotton, jute, tobacco).	Use must adhere to strict monitoring protocols due to pathogenic load.
Land Reclamation	Reforestation and Afforestation Sites. Soil Reclamation projects.	Usage areas must be controlled to prevent public exposure.
Energy Recovery	Green Fuel: Production of briquette, biochar, etc., if the calorific value complies.	Thermal conversion (e.g., pyrolysis to biochar) inherently destroys pathogens due to high temperatures.
Material Use	Building and Construction Materials (e.g., fillers in brick or cement manufacturing).	
Disposal	Fillers in Restricted Landfills (such as industrial sites).	Used for safe disposal options when reuse pathways are impractical.

Thank You

To measure is to Know...

If you cannot measure it, you cannot improve

- Lord Kelvin-

Your Questions/ Queries ????

WASTEWATER, FAECAL SLUDGE AND BIOSOLIDS

