VPPs and embedded PV

Presentation at the Global Renewable Energy Support Programme

Dr Tobias Bischof-Niemz

Centre Manager: Energy at the CSIR in South Africa

New Delhi, 30 March 2015

Cell: +27 83 403 1108 Email: TBischofNiemz@csir.co.za

Agenda

Virtual Power Plants

Embedded PV

What is embedded PV?

1 75...100 MW and more

2 < 1...30 MW

3 1...1,000 kW

Renewables projects have inherently very different sizes – but currently only large projects are incentivised through REIPPPP

Medium: **Small:** Large: **Embedded Generators Utility-scale Distributed Generators** 1...30 1...1,000 PV 75 MW MW kW 1...30 0.5...2 Wind > 100 MW MW MW Embedded projects too **CSP** 100 MW Projects too small for technology small for technology Biomass / >10 Possible, but technology generally Embedded projects too MW leads to larger projects small for technology **Landfill Gas Municipalities Farmers** Feedstock logistics (@ waste water treatment) **Biogas** 0.5...2 MW prohibitive for large projects 0.5...2 MW Projects typically not Embedded projects too **Small Hydro** 0.5...2 MW small for technology utility-scale

Sources: CSIR analysis

In today's power system, "cells" are simply consumers (load) – generation and balancing of supply/demand happens centrally

Balancing of supply/demand on central system level

One-directional power flow

On end-consumer level mostly no generation, no storage/balancing capabilities, no manageable load

Where a "cell" today is simply a consumer (load), in future it will consist of generation, storage and manageable loads

A cell can be:

- A residential complex
- A commercial complex
- Individual buildings on CSIR's campus

Generation

- A whole village
- An industrial customer
- Etc.

C Cell = Storage

Generation options can be:

- PV
- Wind
- micro CHP (mCHP), fuel cells
- Biogas

Storage options can be:

- Batteries
- Thermal storage for space heating
- Thermal storage for industrial process heat
- Power-to-gas / power-to-H2

Load options can be:

- Non-interruptable / non-manageable loads
- Manageable loads (e.g. fridges, space cooling, space heating, pool pumps, water heating, etc.)
- Fuel switch (e.g. power-to-gas or power-to-fuel)

Future power-system architecture: multiple cells of generation, storage and load are balanced by cell agents and form a Virtual Power Plant

Virtual Power Plant

Cell Agent Inter-temporal and inter-spatial optimisation of energy demand and supply between cells

6

Today: CSIR's main campus in Pretoria is a large electricity consumer

CSIR Campus today

- > 52 buildings
- > 150 ha
- > 30 GWh/yr electricity demand
- > 3 MW base load
- > 5-6 MW peak load

Vision:

The three primary energy sources sun, wind & biomass are at the core

The future power system is more distributed and more flexible

Today: Supply follows Load

Tomorrow: Load follows Supply

Agenda

Virtual Power Plants

Embedded PV

What is different with a high share of renewables?

Distributed Power Generation

Renewables are inherently smaller in size than conventionals and they are modular Grid-technology Implications

System Planner's /
Operator's
Paradigm Shift

Paradigm shift from: "supply follows load" to "dispatchable load and dispatchable supply follow fluctuating supply"

Energy Planning and Operational Implications

Background: PV and wind are intermittent (not "schedulable" / dispatchable) and have zero marginal costs → therefore "must run" in any market setting

Democratisation of Power Generation

Renewables attract new funders due to granularity and fixed-deposit type of investment → ownership base very different as compared to conventionals

Socio-economic Implications

Advantages of incentivising embedded PV

Job creation & local content

- Potential for rural enterprises to run a "micro-utility business" with small-scale PV generators → wherever there is a grid, there is a PV business opportunity!
- Huge potential for **SMMEs** in PV **design, installation & verification** for residential & commercial customers

Reduced grid losses and system costs

- Embedded PV is close to the load, i.e. grid losses are low (saves add. up to 5% of costs)
- Generally only very little grid strengthening and no grid extension required (PV follows the grid)
- Aggregated supply profile of spatially distributed embedded PV generators is very smooth and highly predictable

Reduced transaction costs

- Project development costs, legal fees, environmental assessment, etc. are all reduced or non existent for embedded PV as compared to large PV installations
- Funding easier due to granularity (small project size, R 100,000 to few millions)
 - With a proper standard offer defined, rooftop PV installation would become bankable
 - Banks could put the asset into the home loan for easy financing

our future through science

PV and wind are cost-efficient fuel-savers for gas power plants today

Assumption: Typical full-load hours per generator assumed (92% for nuclear, 85% for coal, 50% for CCGT, 10% for OCGT). Changing full-load hours for conventionals drastically changes the fixed cost components per kWh (lower full-load hours → higher capital costs and fixed O&M costs per MWh); average efficiency for CCGT = 50%, average efficiency for OCGT = 35%; gas @ R120/GJ Source: IRP Update; REIPPPP outcomes; CSIR analysis

PV has three main cost drivers - LCOE locked in over lifetime of asset

14

Note: Without inflation, i.e. In real terms; LCOE = Levelised Cost of Energy = discounted total lifetime cost of the PV installation divided by discounted total lifetime energy yield of PV installation Sources: CSIR analysis

Uncertainty about future tariff makes investor require higher initial tariff – with potential subsequent windfall profits

PV investment similar to fixed-deposit savings account, thus requires the same investment certainty, to bring costs down

Uncertainty about future offtake increases LCOE, which pushes required initial tariff additionally up – with subsequent windfall profits

PV investment requires security about tariff and about offtake in order to bring total cost to the power system down

Higher CAPEX of residential or commercial PV can be compensated by lower cost of capital

Assumptions: 20 years lifetime, 1,700 kWh/kWp/yr specific energy yield in year 1, 0.8% annual degradation, 200 R/kWp/yr OPEX, 6% inflation Source: CSIR analysis

Thank you!

