

Stakeholder Dialogue on
Improving Environmentally Sustainable Transport in Sri Lanka
Organized by
Ministry of Environment & Renewable Energy
Air Resource Management Center
Clean Air Sri Lanka
Centre for Science and Environment

CLEANER FUELS AND VEHICLES

Presented by Thusitha Sugathapala Director General, SLSEA

Hotel Taj Samudra, Colombo 03 10th December 2013

OVERVIEW

- The Context
- Fuel Economy
- Cleaner Vehicles
- Cleaner Fuels

THE CONTEXT

Growing Concerns

✓ Energy Security

Energy Efficiency

and Fuel Security

Fuel Efficiency

in the Transport

Sector

- ✓ Environment Sustainability
- ✓ Economic Development

Interventions in Transport

 ✓ Energy Efficient & Environmentally Sustainable Transport System (E³ST)

Fuel

Economy

Average fuel economy and new vehicles registrations,

Fuel Economy Testing in a Chassis Dynamometer

Fuel Economy Testing in a Chassis Dynamometer

Comparison of LDV CO₂ Emission Rates

CLEANER VEHICLES

Roadmap of Advanced Power-train Technologies

CLEANER VEHICLES

- Advanced / Emerging Technologies for New Vehicles:
 Propulsion System Improvements
 - ✓ Direct Fuel Injection
 - ✓ Secondary Air Injection
 - ✓ Pre-chamber / Swirl Chamber
 - ✓ Cylinder Deactivation
 - ✓ Variable Valve Timing
 - ✓ Controlled Auto-ignition
 - ✓ Advanced turbochargers
 - ✓ Friction Reduction
 - ✓ Smart Cooling
 - √ Variable Compression Ratio
 - ✓ High Pressure Fuel Injection
 - ✓ Camless Valve Trains

Medium Term (5 – 10 yrs)

Up to 10 % Improvements in Fuel Economy

Long Term (10 – 30 yrs)

Up to 35 % Improvements in Fuel Economy

CLEANER VEHICLES

- Advanced / Emerging Technologies for New Vehicles:
 Non-propulsion System Improvements
 - ✓ Vehicle Aerodynamics
 - ✓ Tire Rolling Resistance
 - ✓ Vehicle Weight Reduction

3 – 8 % Improvements in Fuel Economy

Alternative Fuels / Technologies

- ✓ Electric
- ✓ Hybrid
- ✓ Bio-fuels (Ethanol, Biodiesel, Biogas)
- ✓ Hydrogen IC / Hydrogen Fuel Cell

Electric

- \checkmark EV: 5 km / kWh (η = 60%)
- ✓ Limited range per full charge

Fuel Economy Benefits of Hybrid

- ✓ Weak Hybrid: Up to 20%
- ✓ Mild Hybrid: Up to 50%
- ✓ Full Hybrid: Up to 80%

Hydrogen

- Production of 1 kg of H₂ needs 55 kWh of electricity (η=70%)
- ✓ IC Engine: 25 km / kg H_2 (η =6%)
- ✓ Fuel Cell: 80 km / kg H_2 (η =20%)

Road Map for Cleaner Fuels:

Global Fuel Quality Developments:

Conventional and advanced biofuel conversion technologies

		Advanced Biofuels		Conventional Biofuels
	Basic and Applied R&D	Demonstration	Early Commercial	Commercial
Bioethanol	Cellulosic Ethanol			Ethanol from sugar and starch crops
Diesel-type biofuels	Microalgae – Biodiesel Biomass to Biodiesel Hydro-treated Sugar-based HCs (from gasification) vegetable oil			Biodiesel (by transesterification)
Other fuels & additives	Novel Fuels (e.g. furanics)	Biobutanol, Dimethyle Pyrolysis-based fue		
Biomethane		Bio-synthetic gas		Biogas (AD)
Hydrogen	All other Gasi	fication Biogas reforming reforming		

Demand for Biofuels – IEA BLUE Map Scenario

Thank You