Status of Implementation of New Environmental Norms and Way Forward

Priyavrat Bhati
CSE
New Norms – reasonable and needed

• New standards are in line with the global standards
 – In fact, China has introduced even tighter standards for metro and highly polluted areas (PM 10 mg/Nm3, SOx 35 mg/Nm3 and NOx 50 mg/Nm3)

• Under CREPS, in 2003, industry had committed to improve its env. performance
 – meeting 100 mg/m3 particulate matter levels;
 – SOx/NOx standards to be implemented by 2005/06

• Progression of regulatory framework supports new standards
 – ECs granted since 2008 required PM at 50mg/m3 for 500 MW size units
 – ECs required allotment of space for FGD installation since year 2003 – space constraint should not be an issue
New Norms

Existing plants – comply by Dec 22, 2017

Water Use:
- Once through Cooling plants (withdraw up to 200 m3/MWh) to convert to Cooling Tower-based plants (current draw 4 m3/MWh); Global avg ~2 m3/MWh
- CT plants to cut water use to 3.5 m3/MWh; New plants to use 2.5 m3/MWh

<table>
<thead>
<tr>
<th>mg/Nm3</th>
<th>Unit size</th>
<th>Installed before Dec 31st, 2003 *</th>
<th>Installed between 2004 and 2016 *</th>
<th>Installed Jan 1, 2017 onwards</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>All</td>
<td>100</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>SO$_2$</td>
<td><500MW</td>
<td>600</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>>=500MW</td>
<td>200</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>All</td>
<td>600</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>Hg</td>
<td>All</td>
<td>0.03 (>500 MW)</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Existing plants – comply by Dec 22, 2017

Unit size
- Installed before Dec 31st, 2003 *
- Installed between 2004 and 2016 *
- Installed Jan 1, 2017 onwards

Unit size
- PM: All
- SO$_2$: <500MW, >=500MW
- NO$_x$: All
- Hg: All

Limitations
- **China**: 50, 35, 10
- **Japan**: 200, Permit, 50
- **USA**: 110, 100, 14.5
- **EU**: 200, 200, 30

<table>
<thead>
<tr>
<th>mg/Nm3</th>
<th>NO$_x$</th>
<th>SO$_2$</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>50</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>Japan</td>
<td>200</td>
<td>Permit</td>
<td>50</td>
</tr>
<tr>
<td>USA</td>
<td>110</td>
<td>100</td>
<td>14.5</td>
</tr>
<tr>
<td>EU</td>
<td>200</td>
<td>200</td>
<td>30</td>
</tr>
</tbody>
</table>
New Norms – Benefit

Pollution load and resource use by coal-based power sector

• Water withdrawal - 24 billion cubic metre per annum (half the amount used for domestic use)

• PM, SOx and NOx between 30% and 60% of all Industrial emissions

Impact on existing capacity assuming new norms implemented

• Water use - 3.5 BCM, 85% reduction – largely due to conversion of OTC to CT

• PM emissions – current 5 lac tonnes, cut to 2.3 lac tonnes, 46%

• SOx – current 76.5 lac tonnes cut to 13 lac tonnes, over 80%

• NOx – current 44 lac tonnes, cut to 14 lac tonnes, almost 70%

• CO₂ – 1.05 billion tonnes, half of all CO₂ from fuel burning
 – Meeting INDC goals depend on improving fleet efficiency - 3% improvement – 125 million tonnes cut (~10-12%)
Implementation status - unsatisfactory

• CSE’s preliminary survey of plants: little progress over 10 months.
 – Many plants are in the early stages of need assessment
 – State owned plants are awaiting NTPC to select technology - need guidance
 – CERC has received only a handful of tariff applications
 – Some state ERCs have made commendable progress – Haryana ERC has obtained capex needs and tariff impact for all the plants in its jurisdiction

• Silver lining - NTPC is making good progress
 – ED (Env.) told CSE all existing plants will meet PM standards by 2017
 – All plants will meet or even exceed water cut targets (Zero waste discharge)
 – 5 pilot studies to test SCR technology for Indian coal (relevant for new plants)

• Plants in pipeline are continuing with construction without any amendments to their plans
 – Plants hope that standards will be modified
Stakeholder Workshop – CSE Organised

• To identify issues Inhibiting progress and recommend solutions
• Attended by all key stakeholders:
 – **Regulators:** CERC, State ERCs (Haryana and Odisha)
 – **Industry:** Association of Power Producers, NTPC, Tata Power, Reliance, State power plants (Punjab, Gujarat & Telangana),
 – **Suppliers** (GE, Thermax, Doosan & Mitsubishi).
 – **Industry experts** (Anil Razdan, ex-Power Secretary)

MAJOR CONCLUSION – TECHNOLOGY IS NOT AN IMPEDIMENT

– Industry experts and manufacturers strongly emphasized that pollution control technologies (ESP, FGD, SCR) options to help achieve new standards are mature with widespread usage.
– Pollution control technologies will work for high ash Indian coal and for Indian operating conditions – will be able to meet new norms.
– The costs of pollution control technology are manageable.
– Domestic and global capacity not a constraint. Supply can grow quickly.
Pollution control technology: Options

- Age/Unit size decide techno-economically viable pollution-control option

Unit size distribution in GW

<table>
<thead>
<tr>
<th>Unit size</th>
<th>+25 years</th>
<th>1990–2003</th>
<th>2004–08</th>
<th>2009–16*</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 250 MW</td>
<td>28.6</td>
<td>16.3</td>
<td>2.1</td>
<td>5.8</td>
<td>52.8</td>
</tr>
<tr>
<td>> 250 and <500 MW</td>
<td>-</td>
<td>5.4</td>
<td>3.8</td>
<td>20.8</td>
<td>30.0</td>
</tr>
<tr>
<td>500 MW and above</td>
<td>5.5</td>
<td>9.5</td>
<td>6.0</td>
<td>82.8</td>
<td>103.8</td>
</tr>
<tr>
<td>Total</td>
<td>34.1</td>
<td>31.1</td>
<td>11.9</td>
<td>109.4</td>
<td>186.6</td>
</tr>
</tbody>
</table>

- Units over 25 years (34.1 GW capacity) should be shut/replaced with SC – inefficient and polluting; significant share uses excessive water; some expensive
- PM: Units before 2008 & smaller units (69 GW) - upgrade ESP; After 2008 – 50 PM norms for most in EC
- SOx: Units before 2008 & smaller units (69 GW)– partial FGD/sorbent injection/low sulphur fuel; Post-2008 larger size units (82 GW)- FGD;
- NOx: Not considered a challenge; pre-2003 capacity need to meet loose norms; significant post-2003 capacity may have low NOx burners etc and meeting norms
Pollution control technology: Costs

<table>
<thead>
<tr>
<th>Technology required</th>
<th>Approx. cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP upgradation</td>
<td>Rs 5–15 lakh/MW</td>
</tr>
<tr>
<td>Partial FGD</td>
<td>Rs 25–30 lakh/MW</td>
</tr>
<tr>
<td>FGD</td>
<td>Rs 50–60 lakh/MW</td>
</tr>
<tr>
<td>De-NOx</td>
<td>Rs 10–15 lakh/MW</td>
</tr>
<tr>
<td>SCR/SNCR</td>
<td>Rs 20–25 lakh/MW</td>
</tr>
</tbody>
</table>

Based on estimates provided by leading global suppliers (GE-Alstom, Mitsubishi, Doosan, Andritz etc)

- Investment needed by a plant would depend upon applicable norm, existing pollution control technology and actual emissions level
- Accordingly, investment may range from:
 - Rs 15-20 lac/MW for small, mid-life plants -need to only upgrade ESP and modify boiler.
 - Eg. - NTPC Badarpur 2 X 210MW units are meeting NOx, SOx (using washed, low sulphur coal) and PM (ESP upgradation – Rs 38cr)
 - Rs 50-60 lacs for over 500MW size, newer units (FGD needed, but little expenditure on PM and DeNOx).
- SCR/SNCR is not needed for existing capacity.
Issues - Timelines

- Timelines were achievable when the norms were announced.
- But little progress – pre-execution work such as technology identification and tariff application could have been done.
- Meeting PM, NOx, water use norms still possible given procurement time of less than 6 months.
 - installation can be done during scheduled shut down or need less than 1 month shut down.
- Procurement of FGD could take up to 24 months.
- Additional time will now be needed - MoEF may need to revisit timelines.
Issues – Cost/Tariff

• Costs of pollution control equipment are manageable
 – HERC calculates (based on actual data from all plants in Haryana) that generation cost will rise by 22 paisa per unit.
 – ICRA, a rating agency, analysis indicated similar impact based on nation wide average investment.
 – NTPC has submitted a cost of Rs 0.52 Crore/MW to CERC for Vindhyachal V (500MW).
 – APP has claimed tariff impact of Rs 0.5-1.25/unit with investment of Rs 1.25-1.5cr/MW - Far exceeds estimates provided by global suppliers

• Industry concerned if ERCs will approve these investments and about potential delays in tariff applications.
 – Will impede financing from banks/markets.
 – CERC representative conveyed capex approval is not a problem - Permitted under ‘Change of Law’ provisions under both Section 62 (Cost Plus) and Section 63 (Competitive Bids) of Electricity Act.
Raw Materials

• Limestone is the key raw material required for FGD.
• Around 10–12 million tonnes of limestone would be required (assuming that units larger than 500 MW will install FGD)
 – In comparison, annual consumption of limestone by the cement industry around 400 million tonnes
 – Gypsum (by product) produced by the wet FGD process can be used by the construction industry.
• The De-NOx process will require ammonia or urea particularly for new plants. Currently, both are imported.
• The annual requirement for ammonia is estimated to be 5 million tonne and for urea 7 million tonnes.
 – Annual urea consumption is around 32 million tonnes
Recommendations: CEA/CERC

- CEA should act as the key technical advisor and prepare a ‘Technology Guidelines’ report detailing pollution control technology options with “Benchmark Capital Costs”
- CERC should develop a simplified/expedited tariff application approval process that should also be used by state regulators.
 - CEA Cost benchmarking “concurrence” by CERC – will help plants raise financing
 - Staggered tariff increase (over 2-3 years) for consumer acceptance
 - Expedited approval if capex is at the lowest benchmark range
 - In-principle investment approval.
- CERC and SERCs should ask plants to urgently provide plant-wise assessment of capex required and tariff impact.
- POSOCO needs to work out a shut down plan to avoid power supply disruption
- **Incentives to plants that comply within timelines should be considered** (eg priority in dispatch order)
Recommendations: MoEF

• Portion of National Clean Energy Fund (NCEF) should be used to support installation of pollution control equipment - coal cess of around Rs 24,000 crore would be recovered from the power sector in 2016–17

• Plants with firm retirement or replacement plans may be allowed to operate in the interim under old standards.

• Old plants that wish to continue operating should be required to meet all air pollution and water use norms. In case old plants wish to undertake life extension, which add significant years to their life, they should be required to meet tighter standards

• Incentives for old plants
 – Plants replacing old units with SC/USC units should not need fresh Environmental Clearances (ECs).
 – MoP is already allowing coal linkages to be transferred. PPA and water rights transfer to a new promoter should also be allowed
NEXT Steps for CSE

• CSE is developing a monitoring template - inputs from the industry, manufacturers, CEA and experts - to survey the implementation status of plants (will share with CPCB)
 • Emission levels, existing control and costs
 • Technology options finalized, costs, timelines
 • Tariff application, financing
 • Procurement, installation
• Work with CEA to help develop technology/cost benchmark
• Work with CERC/ERCs to collect capex/tariff estimates
Action Steps - PCBs

• Monitoring mechanism to regularly track the project implementation progress made by plants.
 – Quarterly progress report

• Develop schedule based on implementation status.
 – Penalties for plants that have made no progress?
 – Plants under construction should meet the standards ideally from day 1 since later modification may be disruptive. Retrofitting allowed?
 – Basis of revision of timelines?