

Content

- Musi River
 Characteristics
 Pollution
- Health and Agronomic risks
- Looking for solutions:
 Resource recovery and reuse

Hyderabad - Water Supply Population – 7.7 million

Source	MLD
Osmansagar	86
Himayathsagar	63
Manjira Barrage	167
Singur Dam	279
Krishna Project	670
Total	1265

Ground water

STP	Capacity (mld)	Location	Year of Commission	
Amberpet	339	Amberpet	Dec-08	
Nagole	172	Nagole	Dec-08	
Nallacheru	30	Nallacheru	Jun-09	
Attapur	51	Attapur	-	
Patel Cheruvu	2.5	Nacharam	Aug-10	
Pedda Cheruvu	10	Nacharam	Feb-07	
Durgam Cheruvu	5	Madhapur	Nov-07	
Mir Alam Cheruvu	10	Near Zoo Park	Feb-07	
Saroor Nagar Lake	2.5	Saroornagar	2003	
Safil guda Lake	0.6	Malkajgiri	2003	
Langer Houz Lake	1.2	Near Golkonda Fort	2003	
Noor Mohammad Kunta	4	Rajendra nagar	Mar-09	
Ranghadhamini Lake	5	Kukatpally	Jul-12	
OFDT-			2	

Water Quality – Selected Parameters

	Amberpet	Gowrelli	Pillaipalli
BOD in mg/L	205.8 (37.1)	77.8 (47.3)	36.2 (10.7)
Nitrate in mg/L	3.3 (1.9)	3.5 (2.6)	3.1 (2.2)
Ammonical Nitrogen in mg/L	32.1 (6.0)	27.5 (6.8)	26.4 (5.7)
EC in µs/cm	1244.8 (242.1)	1545.6 (162.7)	1601.4 (157.5)
Nematode eggs/L	16.9 (18.3)	1.2 (2.8)	0.1 (0.3)
E. coli (cfu/ml)	3 x10 ⁶ to 2 x10 ⁸	-	1 x10 ² to 3 x10 ³

Heavy Metal Profile in River Sediments: Mobility restricted to 15 km

Distance Downstream from Amberpet Bridge (km)

Source: Gerwe et al Copper - Zinc - Lead Cadmium -×- Lead

Total Dissolved Solids (mg/L)

Biological Oxygen Demand mg/L

Musi river water and livelihoods

Canal /lift and ground water irrigation

Evaluation of health and agronomic risks from field to consumer

Irrigated agriculture along the Musi river

Spatial Reference System: WGS 1984 UTM Zone 44N Data Source: Guickbird Image (8/4/2006) Crop Mapping done by EP TRI (2006)

Map done by Leonhard Suchenwirth, IV/MI, November 2007

27 km stretch of Musi River

Amberpet to Pillaipally

Periurban zone 1562 HH (6808)

Rural zone 1109 HH (5081)

PHA Sept 2008 14

Types of irrigation (% area)

Periurban Zone (492 ha)

Rural Zone (518 ha)

Types of crops (% area)

Periurban Zone (492 ha)

Rural Zone (518 ha)

Heavy Metals in Soil Vegetables and Paragrass – Periurban areas

Soil pH	ECe	Org-C	Total-Cd	Total-Pb	Total-Zn
(1:5w)	$(dS m^{-1})$	(%)	$(mg kg^{-1})$	(mg kg^{-1})	$(mg kg^{-1})$
7. 54	1.73	1.45	1.34	35.03	192
(6.2 - 8.1)	(1.0 - 3.2)	(0.7 - 3)	(0.5 -	(7.1 –	(33. 9 –
		6)	5.05)	190)	1391)
Directive	-	-	<3. 0	<300	<300
86/278/EC					
N=28					man hami ava

Source: Simmons et al.

Heavy Metals - Vegetables (Periurban areas)

	Mean estimated element concentration (mg kg-1) Fresh Weight (FW)		
Vegetable	Cd	Pb	
Coriander (n=5)	0.019 (±0.004)	0.048 (±0.015)	
Mint (n=7)	0.002 (±0.0005)	0.107 (±0.047)	
Spinach (n=11)	0.012 (±0.002)	0.052 (±0.021)	
Amaranth (n=5)	0.015 (±0.003)	0.079 (±0.021)	
CCFAC Maximum Levels of Cd and Pb in leafy vegetables Fresh Weight (FW)	<0.2	<0.3	

Assuming a Fresh Weight (FW) moisture content of 95%: Source USDA (2002). www.iwmi.org

Source: Simmons et al.

Heavy Metals Rice Straw – Rural Zone

Irrigation	Straw-Cd (FW)	Straw-Pb (FW)
	(mg kg-1)	(mg kg-1)
Direct	0.015 a (±0.001)	0.249 a (±0.009)
Lift	0.024 a (±0.002)	0.236 a (±0.008)
Control	0.029 b* (±0.004)	0.354 b** (±0.021)
Directive 2002/32/EC	<1. 0	<10. 0

a and b significantly different (p = <0. 05* p = <0. 001**).

Source: Simmons et al.

Heavy Metals in Soil Rice – rural zone

Irrigation Method	Total-Cd (mg kg-1)	Total-Pb (mg kg-1)	Total-Zn (mg kg-1)
Direct	4.44a**	14.60a**	54.0a**
Lift	2.25b**	11.98b**	35.1b**
Control	1.41c**	9.79c**	20.4c*
Directive 86/278/EC	<3.0	<300	<300

N=64; a, b, and c = Significantly different; (p = <0.05* p = <0.001**)

www.iwmi.org

Source: Simplement and land resources management for food, livelihoods and nature

Testing methods to reduce heavy metal contamination (on farm methods)

The pump device is usually buried in the sludge/sediment weighted down by a heavy device.

Testing method:
Positioning the pump device
so that the sludge/sediment is
not transported to the fields.

Prevent complete flooding of vegetables

Photo credit::Francisco Javier Luque Ruiz

www.iwmi.org

E. coli and Parasites – field samples

Based on a permissible level of <20 *E. coli* for market produce (UK standards), the *E. coli* contamination in the vegetables tested could be regarded as varied. Spinach had a higher level of contamination than others

Helminth ova were found at less than ≤1 ova g-1 posing negligible risk

(ANOVA statistic at 95% CI, p=0.000)

www.iwmi.org

Parasite prevalence – farming community

	Periurban %	Rural %
Stool Participants	146	225
Stool Positives	11	21
% Positive	8	9

Community Responses

	Periurban z	zone	Rural zone		
	Farming (n=295) %	Non-farming (n=143) %	Farming (n=298) %	Non-farming (n=102) %	
Diarrhea (last 2-3 weeks)	35	39	57.1	48.1	
Water borne	35	76	33	81	
Food borne	1.8	4.1	7.1	4.1	
Causative agent not known	47	12.2	55	12	

www.iwmi.org

Sanitation and Drinking Water

Latrine Facilities %

Drinking Water Sources %

	Separate Latrine	Shared Latrine	No Latrine	No Response	Ground Water	Purchase/ supplied (Krishna/ Manjira)	Both
Peri Urban (164 HH)	44	38	5	13	79	18	3
Rural (187 HH)	36	24	28	12	72	27	1

Bore well (some) water was not suitable for drinking, could be impacted by wastewater

Poor sanitation and practice of open defecation in rural zone

www.iwmi.org

Institutional analysis

Resource Recovery & Reuse: A business opportunity

Learning from success stories

- □ Of 150 identified promising RRR cases, 50 success stories are currently being analyzed in detail for their institutional settings, business plan, technical approach etc.
- ☐ About 15 of those 50 cases are from India which reflects a high entrepreneurial spirit.
- ☐ The business models of those 50 cases will now be tested for their feasibility at largest possible scale in 4-8 cities around the globe. *Bangalore* is one of them, and if funding allows, more cities could be added.

Action Research

These studies are accompanied by field trials on

- faecal sludge co-composting standards
- pelletizing and blending (urine, NPK, rock-P)
- testing safe application rates in farming.

Source: Pay Drechsel

Beneficiaries

- Private sector, public sector, donors
- Farmers, households and authorities in charge of waste management.

Wastestreams considered:

Organic domestic waste, septage, agro-industrial waste

Contact: Dr Miriam Otoo at <m.otoo@cgiar.org>; www.iwmi.org/Topics/RRR

Total water management

Thank you

