AIR QUALITY IN BENGALORE

KARNATAKA STATE POLLUTION CONTROL BOARD

B.M. Prakash, BE,ME, (Phd) Environmental Officer

M.N.Yoganand, BE,MTec. Environmental Officer

AIR QUALITY MONITORING

- AAQM is required to determine
 - Existing quality of air.
 - Evaluation of the effectiveness of control program.
 - To Identify areas in need of restoration and their prioritization

Objectives of AQM

- Background data.
- Status & trend Evaluation.
- Environment exposure level determination.
- Scavenging Behavior of Environment.
- Air quality management.

Karnataka Scenario

- AAQM started in the year 1983 with 2 stations.
- 30 NAMP stations in the state (09 in Bangalore)
- 5 AQM stations under Board Programme
- 2 CAAQM by KSPCB and 3 CAAQM stations by CPCB in Bangalore.
- 17 cities under AAQM Programme.
- Monitoring involving PM10, PM2.5,NOx, Sox, NH3
 & Lead.

National Ambient Air Quality Standards

			Concentration in Ambient Air		
SI No.	Pollutant	Time Weighted average	Industrial, Residential, Rural and other area	Ecologically Sensitive area (notified by Central Government)	Methods of Measurement
1	Sulphur Dioxide (SO ₂), μg/m ³	Annual 24 hours	50 80	20 80	-Improved West and Gaeke -Ultraviolet Fluorescence
2	Nitrogen Dioxide (NO ₂), μg/m ³	Annual 24 hours	40 80	30 80	-Modified Jacob and Hochheiser (Na-Arsenite) -Chemiluminescence
3	Particulate Matter (size less than 10μm) or PM ₁₀ , μg/m ³	Annual 24 hours	60 100	60 100	-Gravimetric -TOEM -Beta attenuation
4	Particulate Matter (size less than 2.5μm) or PM _{2.5} , μg/m ³	Annual 24 hours	40 60	40 60	-Gravimetric -TOEM -Beta attenuation
5	Ozone (O ₃), μg/m ³	8 hours 1 hour	100 180	100 180	-UV Photometric -Chemiluminescence -Chemical method
6	Lead (Pb), μg/m ³	Annual 24 hours	0.5 1.0	0.5 1.0	-AAS/ICP method after sampling on EPM 2000 or equivalent filter paper -ED-XRF using Teflon filter

Cont.

			Concentration in Ambient Air		
SI No.	Pollutant	Time Weighted average	Industrial, Residential, Rural and other area	Ecologically Sensitive area (notified by Central Government)	Methods of Measurement
7	Carbon monoxide (CO), mg/m ³	8 hours	02	02	-Non-Dispersive Infra-Red (NDIR)
	1116/111	1 hour	04	04	
8	Ammonia (NH ₃), μg/m ³	Annual 24 hours	100 400		-Chemiluminescence -Indophenol blue method
9	Benzene (C ₆ H ₆), μg/m³	Annual	05	05	-Gas chromatography based continuous analyzer -Adsorption and Desorption followed by GC analysis
10	Benzo(a) Pyrene (BaP)- particulate phase only, ng/m³	Annual	01	01	-Solvent extraction followed by HPLC/GC analysis
11	Arsenic (As), ng/m³	Annual	06	06	-AAS/ICP method after sampling on EPM 2000 or equivalent filter paper
12	Nickel (Ni), ng/m³	Annual	20	20	-AAS/ICP method after sampling on EPM 2000 or equivalent filter paper

Source: CPCB, 2009

Location of Monitoring Station

National Air Monitoring Programme (NAMP) in Karnataka

1	TERRI Office, Domlur, Bangalore
2	Amco Batteries (Admin Block), Mysore Rd, Bangalore
3	Victoria Hospital (On Roof top of Plastic Surgery Ward - 1st Floor)
4	Yeshwanthpur Police Station, Bangalore
5	Graphite India Ltd., Mahadevapura Main Road, Bangalore
6	Jnana Bharathi Campus, Environment Science Dept. University of Bangalore
7	RV College of Engineering, Bangalore
8	RO Building, Urban Eco Park, Peenya Industrial Area, Bangalore
9	KHB Industrial Area, Yelahanka (RR Foundries Premises), Bangalore
10	KSPCB Building, Tumkur
11	Regional Office, Kolar
12	Intake well of HPF, Harihar
13	Moti Talkies, Gandhi Circle, Davanagere
14	Regional Office, Davanagere
15	Regional Office, Dharawad
16	Gokul Road, Opp. New Bus stop, Hubli
17	KSPCB Building, Hebbal Industrial Area, Mysore
18	KSRTC Bus Stand, KR Circle, Mysore
19	Regional Office, Bagalkote
20	Regional Office, Belagaum
21	Regional Office, Bidar
22	Regional Office, Chitradurga
23	Govt. Hospital, Gulbarga
24	Regional Office, Hassan
25	Karwar Post Office, Baithkol, Karwar
26	Regional Office, Mandya
27	M/s Segment Scientific Ltd., (Bulk Drug Unit) Baikampady Industrial Area, Mangalore
28	Regional Office, Raichur
29	Visvesvaraya Iron and Steel Plant Ltd., (Oxygen Plant) Bhadravathi Shimoga
30	KSPCB Building, Bijapur

Board's Ambient Air Quality Monitoring Programme

Sl. No.	Name of the Board Station
1	Banasawadi Police Station
2	DTDC House, Victoria Road, Old Air Port Road, Bangalore
3	Central Silk Board Junction, Hosur Road, Bangalore
4	Indira Gandhi Institute of Child Health (NIMHANS), Bangalore
5	Kaji Sonnenahalli, B'lore
6	Peenya Gymkhana , Peenya, Bangalore
7	City Corporation office Building, Bellary
8	Regional Office, Bellary
9	Regional Office, Chamarajanagara

Continuous Ambient Air Quality Monitoring Stations (CAAQMS)

SI.	Name of the CAAOM Station		
No.	Name of the CAAQM Station O.		
1	City Railway Station, Bangalore		
2	Regional Office Complex, KSPCB, SG Halli, Bangalore		

Location of Stations - Bengaluru

Industrial Zone of Bangalore city

Annual avarage values of air pollutants at Export Promotional Park ITPL, White Field Road, during the years 2012-16

Industrial Zone of Bangalore city

Annual average values of air pollutants at KHB Indl Area, during the years 2012-16

Industrial Zone of Bangalore city

Annual average values of air pollutants at Peenya Industrial Area, during the years 2012-16

Annual avarage values of air pollutants at AMCO Batteries, Mysore Road, during the years 2012-16

Annual average values of air pollutants at Victoria Hospital, Bangalore during the years 2012-16

CAAQMS at City Railway station Pollutants: SO₂, NO_x, CO and RSPM

Annual average values of Air pollutants at SG Halli for the year 2012-16

Annual Average values of Air pollutants in 13 location of Bangalore city during the year 2015-16

Source Apportionment Study: Total Emission Loads (TPD)

	PM10	% Contribution	NOx	% Contribution	SO ₂	% Contribution
Transport	22.4	42	146.4	67.4	2.31	15.8
Road dust	10.9	20	0.0	-	0.0	-
Domestic	1.8	3	2.73	1.2	0.68	4.6
DG Set	3.6	7	50.96	23.3	3.35	23.0
Industry	7.8	14	17.19	7.9	8.21	56.2
Hotel	0.1	_	0.20	0.09	0.02	0.01
Construction	7.7	14	0.0	_	0.0	-
Total	54.4	100	217.4	100	14.6	100

Emission Factors for Indian Vehicles

Sl. No	Type of vehicle	Emission factor: Grams/KM				
		CO	HC	NOx	CO2	PM
1	Scooter	3.02	2.02	0.03	29.62	0.046
2	Three wheeler (diesel)	2.09	0.16	0.69	173.8	0.34
3	Cars	0.06	0.08	0.28	148.7	0.15
4	HCV Diesel Bus	3.97	0.26	6.77	735.5	1.075
		0.4 g*35 lakhs vehicle- 1.4 ton				

Time Series Trends: Sulphur Reduction Programme of India

Concentration of SO2 showing an decreasing trend by 15 -20 % over 10 years due to implementation of Sulphur reduction programme of Govt of India (Green Fuel concept).

SO2 Concentration in µg/M3 at AMCO Batteries , Mysore Road		
1998-99	38.0	
1999-00	32.0	
2000-01	26.0	
2001-02	27.0	
2002-03	16.0	
2003-04	16.7	
2004-05	17.6	
2005-06	21.2	
2006-07	15.3	
2007-08	15.9	
2008-09	14.9	
2014=15	9.0	
Standards	60	

AMCO BATTERIES NOx (48)

Multiplicative Model

Accuracy Measures
MAPE 22.430
MAD 7.620
MSD 143.610

Concentration of NOx are showing an increasing trend by 100 % over 10 years. The reason may be increase in vehicular population by 258 %

AMCO BATTERIES RSPM (48)

Multiplicative Model

Accuracy Measures
MAPE 24.489
MAD 13.618
MSD 390.993

Concentration of RSPM for this site showing moderate 16-20% increase in trend over 10 years. The might reason be resuspension of road dust, vehicular traffic, etc.

Action taken

PIL in Hon'ble High Court of Karnataka

- Suo-Moto Public Interest Litigation WP No. 39432/2013.
- Board issued direction under Section 31(A) of the Air (Prevention and Control of Pollution) Act, 1981 to BBMP, Traffic Police, Transport Commissioner and BDA to take steps to control air pollution and reduce noise levels in Bangalore

Directions to Transport Department

- To restrict registration of new vehicles
- To ban the entry of Heavy Motor Vehicles (HMVs)
- To ban the use of two stroke vehicles within BBMP area.
- To ban auto rickshaws in central business district
- To ban use of more than 15 years old HMVs
- No PUC no fuel
- To impose heavy fine and confiscate shrill/ Air horns not confirming to MV Act.
- To plan for traffic regulation.
- Testing of Vehicular emission as well as emission testing centres.
- To convert to CNG
- Create mass awareness.

Directions to BBMP

- To plan comprehensive parking management programme
- To remove dust/silt accumulated on roadside, storm water drain and to transport the silt removed.
- To fill portholes and road cutting
- To evacuate non-parking activities in area earmarked for parking
- To Remove encroachments of footpaths

Directions to Police Department:

- To strictly enforce the provisions of the Noise (Regulation & Control)
 Rules, 2000 & the Orders issued by State Government of the No. FEE 46
 ENV 2000, dated 13.8.2002.
- To plan for regulating the traffic.
- To coordinate with BBMP and Transport department
- To remove encroachment of footpaths.
- To introduce dedicated bus lanes
- To conduct awareness programmes regarding "No honking".

Directions to BDA:

To take up massive afforestation

Recommended Minimum Number of Stations

Pollutant	Population of evaluation Area	Minimum No. Of AAQM Station	
	< 1,00, 000	4	
DNA	1,00,000 - 10,00,000	4 + 0.6 per 1,00,000 Population	
PM	10,00,000 - 50,00,000	7.5 + 0.25 per 1,00,000 Population	
	> 50,00,000	12 + 0.16 per 1,00,000 Population	
	< 100 000	3	
603	100 000 – 1000 000	2.5 + 0.5 per 100 000 Population	
SO2	1000 000 – 10 000 000	6 + 0.15 per 100 000 Population	
	> 10 000 000	20	
	< 100 000	4	
NO2	100 000 – 1000 000	4 + 0.6 per 100 000 Population	
	> 1000 000	10	
	< 100 000	1	
СО	100 000 – 5 000 000	1 + 0.15 per 100 000 Population	
	> 5 000 000	6 + 0.05 per 100 000 Population	
Oxidants	-do-	-do-	

(Source: IS: 5182 (Part 14), 2000)

Distribution of Sampling Station

Total number of stations	Number of stations		
	In city centre or industrial areas	In residential areas	
1	1	0	
2	1	1	
3	2	1	
4	2	2	
5	3	2	
10	6	4	

Source – WHO, 1977

Scope for New stations - Bengaluru

Way Forward

- ➤ Installation and Collection of Metrological DATA
- ➤ Use of Air Quality Modeling to assess the Pollutants
- ➤ Establishment of New AAQM Stations based on Population in phase manner.
- Establishment of Continuous AAQM at Mysore, Mangalore, Dharward, Bellary, Gulbarga, Shimoga, Tumkur & other cities.
- Establishment of AAQM Stations at Industrialized Towns such as Nanjanagud, Hassan, Udupi, Bhadravathi, Sandur, Hospet, Hoskote, Dabaspet, Dodballapur, Anekal etc.,
- > Strengthening of all the laboratory.
- Strengthening AAQM Cell.

THANK 40U...