

PML and South Chennai Lakes

Dr.Indumathi M Nambi

Environment and Water Resources Division

Department of Civil Engineering

IITMadras, Chennai

Email: indunambi@iitm.ac.in

Organisation of the talk

- Studies conducted by IITM in South Chennai
 - Past (2013-14) funded by Department of E&F
 Water Quality in PML Impact of dumpsite and WWTP
 Remediation Strategies
 - Current (2015-16) funded by DST through IGCS
 Hydrological Studies of PML and Lakes Hydrogeological studies (ongoing)
- What did we do?
- What did we understand?
- What do we suggest?

Location of PML and lake systems between Adyar and Palar basins

Pollution of the PML

Solid waste landfill

Pallikaranai Water Samples Collection and Velocity Measurement Points

Adaptive management plan

Remediation and Restoration Strategies

- 1. Prevention of pollution sources
 - Dumpsite removed or revamped Isolation or treatment of leachate.
 - 2. Alternative disposal of Wastewater treated and untreated
- 2. Aggressive Remediation of critically polluted zones
- 3. Increasing water retention capacity feeding drainage channels and linkages

Current Studies

Objectives:

- Identifying locations of inflows and ouflows into and out of the marshland
- Reestablishing connectivity to the lakes
- Restoring the functionality of southern part of the dry marshland
- Restoring the lakes and improving their functionality
- Understanding the hydrogeology to establish connectivity through subsurface

What we have done?

- Reconnaissance survey of Pallikaranai marshland(PML)and lakes surrounding it
- Frequent measurement of water quality and depth at okkiyum maduvu and culvert in radial road
- Identification of inflows and outflows in the marshland and lakes
- Topographic survey was done to get the reduced levels /contours of the terrain of Marshland and surrounding areas
- Water levels and water quality monitoring in open wells around Pallikaranai marshland
- Post Flood scenario

What we learnt from our Studies

- Most of pollution load coming into PML was from Dumpsite and wastewater treatment plant
- High concentrations of BOD, COD, and TDS
- Toxic heavy metals and organics through surface and subsurface flow from dumpsite leachate

What we learnt?

- Connectivity between lakes are poor or completely lost.
- Cascading lake structure altered due to dredging, elevating bunds and loss of canals
- Connectivity to PML is poor and often only wastewater flows reach PML
- Groundwater severely contaminated due to solid waste in dumpsites and around lakes and canals
- Groundwater withdrawn in large quantities through wells in lakes.

What we learnt from our PML Studies

- Five inflows coming from culverts on eastern side but with poor interconnectivity to upstream lakes
- 15 culverts on radial road mostly carrying sewage and leachate
- One long canal from South to north bringing water from lakes
 Semmencheri and Mampakkam
- One uncontrolled outflow –Okkium Maduvu to Buckingham canal
 - Evident from recent flood event 12 -15 ft of water reduced to zero in few days
- No outflow from Buckingham canal except the river mouths
- Ground water surface water connectivity is high

Water Retentior Capacity

Currently,900 ha 90,000cum

Can be increased to 300,000cum

Dredging PML

Increasing water Spread Area in PML

Based on the survey, 1.5 to 3 Million cum volume of water

5 times the water spread area

More birds/ biodiversity
More GW recharge
Less runoff

SOUTH CHENNAI LAKES

Studies conducted by IITM

Objectives of the study

- Devise Management plants for Lakes to improve their functionality as
 - Decentralized water Source
 - Ground Water Recharge
 - Water Retention and Flood Mitigation
 - Promote recreation spots and tourism

Ranganathapuram Lake (near Medavakkam) B and A

Nemmelicheri - Narrow outflow canals

Narayanapuram lake – Need for culverts

Channel outside lake from

South side of Nara lake Old pump

Sittalapakkam lake (B and A)

Vellakal lake Near Nanmangalam forest (Bad policy)

Jalladianpet lake

Eutrophication

Nesavalar Nagar outflow to Jalladianpet lake

Solid Waste dumped in canals

Roads dividing Lakes – No culverts

What we learnt from Lake studies

From the topographic survey conducted around the PML the following inferences are made

- The slope is towards the marshland
- i.e. Elevation of the lakes are decreasing towards the marshland in Northern as well as western part.
- All the lake bunds have been elevated and lakes dredged which have made the cascading design nonexisiting anymore.
- Each lake is a subcatchment.
- During flood event the emergency outlets should be connected to a downstream water body.
- Lake bunds around the PML are at a higher elevation than PML
- South Canal connected to a large no of lakes and flows North into the city

What needs to be Done with respective to sustainability and functionality

- Engineering Interventions in surface water bodies PML and lakes
 - Dredging canals,
 - Dredging PML
 - Establishing lost connectivity between lakes and PML
 - Reversing flow directions
 - Protection of lakes and canals
 - Construction of weirs in outlet and inlet of lakes
 - Sluice gates should be employed in Okkium maduvu
 - Reservoir Bathymetry studies can help us to understand not only the depth variation but also the sediment deposition

Engineering inerventions for ground water

- Pumping of groundwater has to be accounted and regularized
- . Permeable reactive barrier walls or other treatment strategies can be employed to remediate the leachate which is percolating from the dumpsite.
- Soil lithology can determine the recharge depth as well as the infiltration capacity of the soil
- Hydrogeological study and pumping test should be done to determine the aquifer storativity and transmissivity.
- Ground water Recharge structures within PML /Lakes to establish subsurface connectivity.

What needs to be done with respect to Flood control

- Reallignment of South canal to flow out of the city
- More canals should be made in the southern part of marshland which connects to BC
- Establish connectivity to BC at the ECR link Road
- Establish connectivity between BC and Bay of Bengal
- Construction of alternative connections to Buckingham canal

What do we need to Design - Data and models

- Missing crucial data
 - Year round Flows in and out of lakes, bathimetry, sediment load
 - To design canals, control structures
 - To determine dredging depths
 - To determine mass loads of pollution
- Systematic hydrological studies
- Flow Measurements into and out of marshland/lakes
- Topography from DEM
- Hydrogeological Investigations
- Pilot scale studies on PRB to protect PML/GW from leachate heavy metals

THANK YOU