INTEGRATING ECONOMIC INSTRUMENTS (EIs) WITH EMISSION REGULATIONS: THE ROAD NOT TAKEN

Shreekant Gupta
Delhi School of Economics, University of Delhi
&
LKY School of Public Policy, NUS

sgupta@econdse.org

CSE Workshop on
Diesel Price Deregulation and its Implications for Dieselisation of the Automobile Sector
November 28, 2014
(intersecting) story lines...

- Economic growth – the “re-emergence” of Asia
- Growth of cities (urbanisation)… mega-cities & urban sprawl
- Motorisation… fatal attraction
- Air pollution and health
- Policies flawed (and ineffective)
- And so…the road (not) taken… 😞
Summary

• India’s economy is growing at the same time as its population is urbanising…

• Important aspect is growing motorisation -- attendant social, economic and environmental consequences..

• In this, India and other dynamic Asian economies following (unfortunate) Western precedent on urban form, cars and policies (regulatory, supply side)

• Several pernicious aspects of motorisation -- focus on air pollution in Indian cities and the role of vehicular emissions. Serious environmental and human health issue

• Are policies on right track? No! (supply side, regulatory, not cost-effective) need to harness economic instruments
India’s economy, population and cities

- World’s 3rd largest (PPP), 10th largest (nominal) economy ($4.7 trillion and $1.8 trillion, respectively)
- By 2030, will grow by 4 times to 3rd largest in nominal terms as well
- By 2030 world’s most populous country (in 2028: China = India = 1.45 billion)
- Cities (“engines of growth” -- Prime Minister Dr. Singh – 50-60% of GDP)
- Urbanising relatively slowly (compared to other countries and its per capita income levels) -- China 45%, India 31%, Pak 50% (in 1950 -- more Indians in cities than in China)
- But still, by 2030 – 41% Indians in cities…
- And by 2050 world’s second largest urban system (China tapers off to 1 billion in cities & India–0.9 billion, over 60%)
India’s urban form... cause for concern?

- Two aspects of India’s city growth shaping its urban form and its urban future:
 - Urban Indians tend to live in bigger cities—about 50% live in cities of half million more and 42% live in cities of over a million. Number of ‘million-plus’ cities in India grew ten-fold (5 in 1951 to 53 in 2011)
 - Three Indian cities among 10 largest urban agglomerations in the world. Delhi NCR -- 23 million --joined an ‘exclusive’ league of ‘meta-cities’ -- ranked 2nd behind Tokyo ahead of Shanghai, Mumbai 7th (20 million) and Kolkata 10th (14.4 million)
 - Urban sprawl--average density of 53 ‘million-plus’ cities declined by 25% from the 1990s to 2010s (from 40,000/sq km to 30,000/sq km)
Growth in motorisation choking Indian cities esp. bigger ones. Delhi largest number of motor vehicles (7.2 million), followed by Bangalore (3.8 million), Chennai (3.5 million), Hyderabad (3 million) and Pune (2 million). These 5 cities alone accounted for over 49% of total vehicles in ‘million-plus’ cities.

Over last three decades number of motor vehicles more than doubled, every ten years or less.

Registered motor vehicles grew from over 52 million in 2000 to 142 million in 2011, compound annual growth rate of about 10%.

Over a longer time horizon, between 1971 and 2011 the number of vehicles grew 75 times from about 1.9 million to 142 million.

Over same period vehicles per 1000 (of a growing) population increased from mere 3.4 to more than 117, that is, about 34 times! (China 119)
... but worst is yet to come!

- Studies find relationship between vehicle ownership and per capita income to be non-linear (approximately S-shaped, that is, with two inflection points)
- Thus, vehicle ownership grows slowly at low levels of per-capita income, then about twice as fast as income at middle income levels (from $3,000 to $10,000 per capita) and finally about as fast as income at higher income levels before reaching its maximum level (the “saturation” point) at the highest income levels ($5000 per capita – rule of thumb…)
- For India, saturation level estimated at 683 vehicles per 1000 people versus 807 for China and 853 for the United States
...and then there are (inelastic) oil imports

- Growing dependence on imports (India imports 75% of its oil)
- Important consequences for economy & energy security
- India’s oil import bill $169 billion in 2012-13 (up by 9%)
- And this on heels of a 47% increase from $106 billion to $155.6 billion in the previous year (2011-12)
- Massive and unsustainable trade deficit—$185 billion (more than 10% of GDP) in 2011-12, an increase of almost 56% over the previous year!
- Problem exacerbated by domestic subsidies (pervasive global phenomenon--in 2011, subsidies for fossil fuels worldwide were $523 billion, $111 billion higher than in 2010)
- Oil most subsidised form of energy followed by under-pricing of electricity
- India among top 4 countries subsidising fossil fuels for a total $40 billion in 2011 (oil subsidies alone more than $30 billion)
- By comparison, financial support to renewable energy amounted to $88 billion in 2011 (op. cit.)
Air pollution in Indian cities is killing people

- *Global Burden of Disease 2010* (consistent and comparative description of the burden of diseases and injuries and the risk factors that cause them): ambient particulate matter (PM) pollution = outdoor air pollution--ranked as sixth leading cause of mortality and morbidity in South Asia (PM10, PM2.5)

- For India alone and only looking at mortality (not morbidity), ambient PM pollution fifth largest killer after high blood pressure, indoor air pollution, tobacco smoking and poor nutrition
Top 20 Mortality Risk Factors in the US, India, and China in 2010

Ambient PM$_{2.5}$ caused an estimated 103,000 deaths.

Ambient PM$_{2.5}$ caused an estimated 627,000 deaths.

Ambient PM$_{2.5}$ caused an estimated 1,234,000 deaths; 14.9% of all deaths in 2010.
DALYs Attributable to Ambient PM$_{2.5}$ by Cause in the US, India, and China in 2010

US
Total attributable DALYs = 1,820,412

India
Total attributable DALYs = 17,759,991

China
Total attributable DALYs = 25,227,281
Air pollution (PM10) in Indian cities is getting worse

- No. of “critically polluted” cities increased from 49 to 89 (2005-10)
- In 2005, about 75% of cities exceeded the standard--78% in 2010
- Levels of PM10 among highest in Delhi National Capital Region (NCR)--annual ambient concentrations averaged 260 µg/m3--more than 4 times national annual standard (60 µg/m3) & 13 times WHO stds (20 µg/m3)
- Due to seasonal and other factors levels twice as high in winter months
- In 33 out of 35 metropolitan cities PM10 conc. exceeded standard.
- Close to half of Indian cities experience severe particulate pollution.
- Half of urban population of the country exposed to particulate pollution that exceeds the standard
- As much as a third of the urban population is exposed to critical levels of particulate pollution
- Groups vulnerable to air pollution elderly, children and the poor
Taxonomy of policy instruments to reduce pollution

<table>
<thead>
<tr>
<th>Policies</th>
<th>Direct instruments</th>
<th>Indirect instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market-based instruments (MBIs)</td>
<td>Effluent/emission charges; tradeable permits; deposit refund systems</td>
<td>Input/output taxes and subsidies; differential tax rates</td>
</tr>
<tr>
<td>Command and control measures (CAC)</td>
<td>Emission regulations (Source-specific, nontransferable quotas)</td>
<td>Regulation of equipment, processes, inputs, and outputs</td>
</tr>
<tr>
<td>Government production or expenditure</td>
<td>Regulatory agency expenditures for purification, cleanup, waste disposal, and enforcement</td>
<td>Development of "clean" technologies</td>
</tr>
</tbody>
</table>
Taxonomy of policy instruments to control vehicle emissions

<table>
<thead>
<tr>
<th></th>
<th>Market based instruments</th>
<th>Command & control regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct</td>
<td>Indirect</td>
</tr>
<tr>
<td>Vehicle</td>
<td>Emissions fees</td>
<td>Differential vehicle taxation</td>
</tr>
<tr>
<td></td>
<td>Tradable permits</td>
<td>Tax breaks for new vehicles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COE (Singapore)</td>
</tr>
<tr>
<td>Fuel</td>
<td>Lead banking</td>
<td>Differential fuel taxation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High fuel taxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic</td>
<td>Congestion charges</td>
<td>Physical restraint of traffic</td>
</tr>
<tr>
<td></td>
<td>(including ERP)</td>
<td>Designated routes</td>
</tr>
<tr>
<td></td>
<td>Parking charges</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subsidies for less polluting modes</td>
<td></td>
</tr>
</tbody>
</table>
Urban Passenger Transport Emissions: Major Determinants and Linkages

Total emissions = emissions per liter × liters per passenger km × passenger kms traveled.

Note: Solid lines represent direct determinants of the components of transport emissions. Dotted lines show linkages between determinants.
Policies Targeting Urban Passenger Transport Emissions and their Determinants:

\[
\text{URBAN PASSENGER TRANSPORT EMISSIONS} = \text{EMISSIONS PER LITER OF FUEL} \times \text{LITERS OF FUEL PER PASSENGER KILOMETER} \times \text{PASSER KILOMETERS TRAVELED}
\]

Policies targeting total emissions
- Emission taxes
- Emission permits
- Paving roads

Policies targeting emissions per liter of fuel
- Determinants
 - Fuel type
 - Fuel quality
 - lead content
 - sulfur content
 - volatility
 - oxygenation
 - Temperature
 - Altitude
- Policies targeting emissions per liter of fuel
 - Emission standards
 - Fuel quality standards
 - limited lead content
 - limited sulfur content
 - volatility limits
 - cleaner octane booster

Policies targeting liters per passenger kilometer
- Determinants
 - Fuel efficiency
 - Engine type
 - Technology
 - catalytic converter
 - fuel injection
 - turbocharging
 - Age of vehicle
 - Transport mode/Passenger capacity
 - bus, rail, metro
 - Road conditions
- Policies targeting liters per passenger kilometer
 - Fuel economy standards
 - Promote cleaner engines such as 4-stroke
 - Mandated abatement equipment or retrofitting
 - Early scrappage incentives
 - Inspection & maintenance Roadside inspections
 - Provide public transport to reduce fuel per passenger kilometer travelled

Policies targeting passenger kilometers traveled
- Determinants
 - Fleet size
 - Engine type
 - Vehicle load
 - Age of vehicle
 - Distance of trips
 - Population
 - Income
- Policies targeting passenger kilometers traveled
 - New vehicle quotas
 - Fuel taxes/ pricing
 - Promote car pooling, HOV, enforce against overloading
 - Early scrappage incentive Inspection & maintenance Roadside inspections
 - Traffic engineering Demand management Road supply
 - Provide public transport to reduce fuel per passenger kilometer travelled
 - Urban planning
 - Zoning laws
 - Promote walking, biking
 - Urban planning
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Policy Instructions</th>
<th>Implementation Issues</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport emissions</td>
<td>directly reduce vehicle emissions through standards.</td>
<td>Emissions standards may be technology-forcing or technology-following.</td>
<td>Emission standards: highly successful in US</td>
</tr>
<tr>
<td>Fuel quality</td>
<td>Mandated fuel standards; emissions tax; emissions permits</td>
<td>Mandated fuel standards have been highly successful in US, Japan, Europe. Reformulation cost can be significant, but much lower than health benefit. Oxygenation reduces HC and CO emissions, but may raise NOx.</td>
<td>Zero-lead stds: Thailand, Mexico, Brazil, Colombia, Japan. Volatility limits: US, Sweden, Finland. Oxygenation stds: US, Brazil, S.Africa, S.Korea, Thailand, Sweden, Finland. Emission fees: none.</td>
</tr>
<tr>
<td>Engine type</td>
<td>promote a halt to building and importing dirty 2-stroke engines; convert new 2-strokes; convert bus/truck/taxi engines to run on alternative fuels</td>
<td>Adequate lead-time is required for manufacturers to comply at low-cost. Cost to consumers is about 6% for motorcycles (to add catalytic converters to 2-strokes in Taiwan). Some conversions may have low or negative costs (due to fuel cost saving, etc.). Others may require strong incentive/support programs.</td>
<td>Elimination of 2-stroke motorcycles by setting emissions standards: US Taiwan: adopted US standards, but more recent technology allows some advanced 2-strokes to meet standards. Retrofitting trucks to run on LPG: Bangkok Converting taxis to run on LPG: Tehran Converting buses to run on CNG: Santiago, Delhi</td>
</tr>
<tr>
<td>Technology</td>
<td>mandate catalytic converters in new cars; Mandate PCV valves to control crankcase emission; retrofitting program</td>
<td>Consumer tampering with catalytic converter may be problematic. I/M program can mitigate this.</td>
<td>Catalytic converters: US Crankcase emissions: US Retrofitting catalytic converters: Germany, Sweden, Hungary</td>
</tr>
<tr>
<td>Size of fleet</td>
<td>ownership restrictions: new vehicle quotas; high ownership fees</td>
<td>Requires strong policies to succeed amid economic growth. More feasible if consumer demand is relatively low, cities are dense, public transport is efficient, and complementary policies (like high parking fees, road/area pricing, high fuel taxes) exist.</td>
<td>Quota: Singapore High ownership fees: Singapore Vietnam</td>
</tr>
<tr>
<td>Age of fleet</td>
<td>scrappage incentives; higher registration fees for old vehicles; I/M program for high polluters; roadside inspections</td>
<td>Scappage programs have worked, e.g., subsidized trade-in programs; I/M programs are costly to set-up and administer. Inspecting subset of vehicles may be more feasible.</td>
<td>Scappage incentives: Singapore, Mexico City (taxis) I/M: US, European Union, Japan, Roadside inspection: Hong Kong, Mexico, Thailand</td>
</tr>
<tr>
<td>Characteristic</td>
<td>Policy Instructions</td>
<td>Implementation Issues</td>
<td>Examples</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Congestion | **Direct:** new vehicle quotas; high taxes on ownership; no-car zones; no-car days; | Direct policies succeed in some cities. Require political will and strength (because of consumer opposition). No-car days in Mexico had perverse effect of raising emissions. No-car zones have been well received by consumers and business owners in some areas. Area and road pricing requires initial investment, but fees generate revenue. Insurance: verification of usage rates is difficult. | Quota: Singapore
High ownership fees: Singapore, Vietnam
No-car zones: Curitiba, Brazil Tokyo, Hong Kong
No-car days: Athens, Mexico City, Santiago
Area pricing: Singapore, Amsterdam, unsuccessful in Kuala Lumpur.
Road pricing: widespread
Insurance adjustment: US |
| Efficiency Enhancement | computerized traffic lights; dedicated road lanes; staggered work hours; car pooling incentives; light rail or bus system | Traffic engineering can work, but sometimes there is an immediate one-time benefit followed by gradual deterioration. Initial cost may be high (but usually outweighed by benefits). Commuters spacing has mixed record. Mass transit done well is effective, but may be costly (esp. subway system). Buses are relatively cheaper. | Synchronized traffic lights: widespread (London is advanced).
Dedicated bus lanes; Bangkok, Jakarta, Manila, Sao Paulo, Tehran, Tokyo; HOV lanes for cars are widespread
Staggered work hours: Singapore, Surabaya
Car pooling incentives: US, Singapore
Light rail/metro: Cairo, Calcutta, Hong Kong, Mexico City, Pisa, Rio de Janerio, Santiago, Sao Paulo, Seoul, Seoul, Singapore |
| Road Supply | state built roadways; joint public–private roads; private new toll roads. | Increasing road supply has low prospects for success in long run (since it may encourage more driving), but can help in short run. | New public road construction: widespread
New private toll road constructions |
International Experience: Policy Implications

• Focusing on reductions in emissions per kilometer (a la US) has only a limited impact on aggregate vehicular emissions since it does not affect VKT (vehicles kms. traveled)

• Emissions/km = (emissions/litre) x (litres/km)

• VKT = vehicles x km/vehicle

• United States--even as cars became cleaner, vehicle miles traveled by an average driver doubled between 1970 and 1988 while technical fixes have been used in many countries such as US, they are not in themselves enough to curb vehicular emissions. Behavioral modifications are crucial.

• Remove perverse incentives for vehicle ownership and use
<table>
<thead>
<tr>
<th>Cost effectiveness of various control measures (US$/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minibus CNG retrofit</td>
</tr>
<tr>
<td>Gasoline truck CNG retrofit</td>
</tr>
<tr>
<td>Centralised I&M high-use vehicles</td>
</tr>
<tr>
<td>Decentralized (garage-based) I&M high-use vehicles</td>
</tr>
<tr>
<td>Centralized I&M passenger cars</td>
</tr>
<tr>
<td>Reduce sulfur content in diesel (from 1% to 0.1%)</td>
</tr>
<tr>
<td>Decentralized (garage-based) I&M passenger cars</td>
</tr>
<tr>
<td>Road paving (1000 kms.)</td>
</tr>
<tr>
<td>Reduce sulfur content in diesel (from 0.4% to 0.1%)</td>
</tr>
</tbody>
</table>