

Air Pollution and Health in Ethiopia: Review of Literature

Worku Tefera (MPH, PhD Candidate)

Dr. Abera Kumie (PhD) Prof. Kiros Berhane (PhD) Prof. Frank Gilliland (PhD)

Outline

- 1. Introduction
- 2. Methods
- 3. Results
- **3.1 Traffic/Outdoor AP**

Magnitude, Health Effects, Policy & Legal Framework & Organizational structure & Coordination (IAP/OAP)

- 4. Conclusion
- 5. Recommendation and Way Forward
- 6. References
- 7. Acknowledgement

1. Introduction

- Air pollution (AP) is a problem in both the LMIC and non-LMIC settings. The sources and magnitude differ in both cases.
- In non-LMIC setting: AP is mainly from industrial and motor vehicle sources;
- AP in LMIC, mainly from HH solid fuel use (urban + rural), with
 emissions from motor vehicle & industries (urban)
- The lack of capacity and data on AP makes the LMIC rely on non-LMIC models, which may not suit the LMIC settings.
- Moreover, it poses difficulty to undertake studies; i.e. Health impact linked with AP magnitude to inform policy.
- E.g. South Africa issued Air Quality Act on 1965

Intro' #2

- •Air Pollution occurs when toxic aerosols are released in to the environment in quantities that can adversely affect health and human wellbeing.
- AP is a local as well as regional and global problem via transboundary movement of air.
- Ethiopia, as an emerging developing country is challenged by AP
- Sources can be from Indoor and /or Outdoor Environments (Natural Vs Anthropogenic; Stationary Vs Mobile)
 - Indoor cooking, lighting or space heating
 - Industries, agricultural or construction activities
 - Motor vehicles

Intro' #3

- The latest WHO guideline on PM pollution was updated on 2005
- The US EPA identify 6 criteria pollutants:
 - Ozone (O3),
 - Particulate Matter (PM);
 - Nitrogen Oxides (NOx),
 - Carbon Monoxide (CO),
 - Sulfur Dioxide (SO2), and
 - Lead (Pb),)
- PM2.5: is the most health impacting pollutant

Intro' ...cont'd

- Health Impacts:
 - ALRI,
 - COPD,
 - Asthma & Allergies,
 - Lung cancer,
 - Eye disease,
 - Cardiovascular problem,
- Regular Monitoring and Concerted Action can reduce the impact of air pollution
- Thus, the aim of the SANA systematic review is to understand the levels of air pollution in Ethiopia, and identify the gaps

2. Methods

- The literature review used a set criteria to select the Peerreviewed articles
- As literature from peer-reviewed articles is very limited, the review also included gray literature such as:

Government publications, Annual reports, Environmental Outlook Report

- A secondary source of qualitative data from SANA.
- Scope: Not included Meta-analysis; Ethiopia

Methods...cont'd

- Criteria for checking the quality of data, reports, and publications include:
- 1. Adherence to the principles of objectivity in the collection, processing, and dissemination;
- 2. Methodological soundness
- 3. The type of Study Design;
- longitudinal vs cross-sectional; prospective vs retrospective
- 4. Accuracy and reliability
- 5. Ethical clearance obtained/or have no/any ethical concern;
- 6. Higher ranking for studies with ethical clearance and/or studies which have no/any ethical concern.

3. Results

- There is paucity of evidence on OAP as well as IAP
- Relatively more Studies conducted on IAP than OAP, though in few areas:
 - ✓ Northern Tigray
 - ✓ Western Jimma and West
 Wollega
 - ✓ Eastern Kebribeyah
 - Central Butajira (2) and Addis Ababa (3)
- The few outdoor air pollution studies were concentrated in Addis

Magnitude of IAP in Ethiopia

Author, Year	Study Design	Criteria pol (Microg/m ³ ;	n	Sett ing			
		CO (ppm) (8-hr WHO Guidel. 10ppm)	PM (10)	PM (2.5) (US EPA 24-hr 35 mu g/ cu m; WHO - 15 mu/ g/cu m)	NOx		
Kumie, A., et al. 2009	Longitudinal study				Wood =71.2, cowdung =67.5, crop res =56.1	3300	Rural
Usinger, J., 2008	UNKNOWN	X=44				11	Rural
Habtamu S. et al 2012	Comparative Cross- Sectional study			X=2417, R=483-2904		60	urban
Gaia Assoc. 2007	Exposure Assessment	Traditional=80.7, Cleancook =16.7		Traditional =2170, Cleancook =130		11	rural
Graham, Megan, 2011	Mixed method	X=16.08 R=0.66-69.65		X=1580 R=136- 12,739		69	urban
Faris, K., 2002	Cross sectional study	82.46	197			382 (18)	Rural
Keil, C., et al. 2010	Cross-sectional Study	Area samp=38 Personal=57		Area= 846 Personal= 905		10	urban
Kumie, A, et al.							_
2009 Gaia Assoc. 2007	Longitudinal study				NO2= 97	3300	Rural
Guiu 115500, 2007	Pre-Post Experimental design	Before=28.2 , After=6.8		Before=640, after=280		9	Urban

HH Energy Use Pattern in Ethiopia

Citations: Author & Year	WMS, 2011*			Kumie, Desalegn, A. 2009 B. 2012		Faris, K. 2008	Senbeta, H. 2012	
Type of Fuel Used for Cooking (%)	Country, %	Urban, %	Rural, %	Rural, SNNPR, Butajira, %	Rural, SNNPR, Shebedino, %	Rural, Jimma, %	Urban, Addis Ababa, %	
Wood	85	63.3	90.8	52.1	97.3	86	21.1	
Leaves/Crop residue/ Animal dung	7.2	2.7	8.4	47.8	2	14	4.7	
Charcoal	3.9	17.5	0.2	0.1	0.7	-	34.4	
Solid fuel	95	87.4	99.6	99.9	100	100	60.2	
Kerosene	1.2	4.9	0.2	0	-	-	18	
LPG/ Electricity	1.9	7.7	0.2	0	-	-	21.8	
Total	100	100	100	100	100	100	100	

Household Energy Mix

Factors Determining Health Outcome The following factors were identified:

- Type of fuel & Cooking stoves used,
- Ventilation & Number of Rooms,
- Ecology, Weather condition & season of the year
- Frequency of fire events & NO. of Foods cooked per day
- Mothers' cigarette smoking status
- Child holding behavior while cooking

Children and Women are most affected groups

Traffic-related Ambient AP

- Only few studies published on outdoor/traffic-related AP
- > Addis Ababa 3 peer-reviewed articles
 - CO (Longitudinal) (Kumie, A. et al. 2010)
 - PM10, CO, & O3 Cross-Sectional
 - TSP and PM10 (Longitudinal) ; PM10 speciation
- Jimma 1 peer-reviewed
 - Health Outcome Vs. Distance from Road & Traffic volume (no pollutant measurement)
 - effect of living close to traffic bearing roads (<150 m) had more risk of wheezing
 - No statistically significant difference in the overall prevalence of wheeze.
 - Increased risk of wheeze observed within 150m close to roads

Factors Affecting Asthma/Wheeze (Traffic-related & Indoor AP)

Some identified risk factors in Jimma study:

> Living in Proximity to Traffic-Roads

> The volume of vehicular traffic per day

> The use of Kerosene for cooking food

Indoor Smoking , Biomass fuel combustion, and

Other environmental factors:

➤weather, season, altitude

may attribute to the onset or exacerbation of Allergies

Policy, Legal & Organ. Framework (AP)

Policy and Legal Framework

- The FDRE Constitution
- The Environment Policy

Pollution Control Proclamation

The Environmental Impact Assessment Proclamation

Air Quality Guideline (focusing on industrial emissions)

The Health Policy, Energy Policy, Water Policy

Major Gaps on AP Control (KII)

- Less priority given to AP (budget allocation)
- There is paucity of evidence/research on AP:
 - No strategic direction, priority research agenda, and established Key pollutants set on AP;
- No reference laboratories, research centers & facilities for AQ monitoring
- Training centers on AP not available
 - > Skill gaps on monitoring, data analysis
 - On-the-job-training, short-term and long-term training are limited
- Organizational structure lacks focus on AP, lacks coordination mechanism among key stakeholders
- No regular Monitoring on AQ (Ambient/Indoor environs)

Priority Needs

- Need for encourage multi-sectoral/multi-disciplinary AQ research of high-quality standard
- Key pollutants to be monitored, targeted for control; and to establish well equipped AQ lab and testing center for new technologies
- Design Strategic direction, research priority agenda on AP
- Design Short & Long-term training programs & courses; Onthe-job-training; and address issue of AP in curricula
- Envisage & act towards establishing regional excellence on AQ and AP training in Ethiopia

4. Discussion

- LMIC have technological and technical capacity limitations (India..)
- In Sub-Saharan Africa,
- few countries has data on air quality and
- very limited monitoring network for air pollutants
- In South Africa, air pollution sources are:
- Mainly motor vehicles and coal burning for energy production elevating the PM, SO2 levels;
- Solid fuel use is important source of IAP(source: Caradee W. & Rietta O., 2010)
- Global focus on Climate Change adaptation and mitigation benefiting LMIC countries to give the necessary attention to Air Quality
- Ethiopia adopted WHO guideline on Air Quality although monitoring suffers from lack of expertise, facilities and coordination
- Indoor air pollution levels exceeded guidelines in key parameters, yet limited ambient parameters studied not yielding conclusive..

5. Conclusion

- Given limited available data, NOx, RPM, CO were found to be important pollutants (I/OAP),
- The policy framework on the environment is in place, yet
- key stakeholders lacks coordination, not mainstreamed AP, and given less priority to AQ
- There is little capacity in terms of technical, financial, training facilities, and Research
- No regular monitoring or surveillance on AQ except in one NMA station (most recently established)

6. Recommendations

- There is a need for more high quality evidences focusing on key pollutants such as PM2.5, NOx, SO2, O3 and CO (both indoors & Trafficrelated)
- There is a need for establishing air monitoring stations in Urban centers and Industrial areas
- The current effort to monitor Nox, O3 and CO at NMA need be strengthened by expanding the stations across country
- Actions needed to cut the pollutant emissions from motor vehicles and solid fuel burning to minimize exposure of vulnerable groups
- Health linked air pollution studies are recommended to quantify the attributed impact of air pollution on human health

Way Forward (GEOHealth EA.)

- Conduct AQ study in Addis, including PM2.5 in 5 locations of Addis (1-in-3 days for a year)
- Speciation of chemical composition
- Conduct NOx measurement and Model trafficrelated pollution
- Associate the pollution with Hospital health outcomes data
- Conduct similar studies in EA

References (partly)

- 1. Federal Environmental Protection Authority (2008). Ethiopia Environment Outlook: Environment for Development. Addis Ababa, Ethiopia, Federal Environmental Protection Authority/UNEP.
- Keil C, Kassa H, et al. "Inhalation exposures to particulate matter and carbon monoxide during Ethiopian coffee ceremonies in Addis Ababa: a pilot study." J Environ Public Health 2010: 213960.
- Dyjack D, Soret S, Chen L, Hwang R, Nazari N, Gaede D. (2005). "Residential Environmental Risks for Reproductive Age Women in Developing Countries." Journal of Midwifery & Women's Health Volume 50(No. 4).
- 4. Kumie, A. K., Charles; Berhane, Yemane; Emmelin, Anders; Ali, Ahmed; (2010). "Magnitude andvariation of traffic air pollution as measured by CO in the City of Addis Ababa, Ethiopia." Ethiop. J.Health Dev.**24(3): 156-166.**
- 5. Biruck Desalegn, e. a. (2011). "Household fuel use and acute respiratory infections among younger children: an exposure assessment in Shebedino Wereda, Southern Ethiopia." African Journal of Health Sciences **Vol. 18.**
- 6. Sanbata, H (2012). Indoor Air Pollution and Acute Respiratory Illness among Children from Household fuel use in Addis Ababa, EthiopiaCenter for Environment Science. Addis Ababa, Addis Ababa University. **Masters: 98.**
- Federal Government of Ethiopia (2010). Situational Analysis and Needs Assessment (SANA) on the Libreville Declaration on Health and Environment Interlinkage Country Report, Ethiopia, Addis Ababa, April 2010.
- 8. WHO (2007). Indoor Air Pollution: National Burden of Disease Estimates. France.
- 9. WHO (2009). Country Profile of Environmental Burden of Disease. . Public Health and Environment. Geneva.

Acknowledgement

- NIH/FIC through the GEOHealth hub for financial assistance
- GEOHealth Team: especially, Dr Abera K., Prof. Kiros B., Prof. Frank G., Prof.
- Other Investigators of GEOHealth hub: Jon Samet and Dr. Araya Asfaw
- Research Assistants: Habtamu Sanbata
- Workshop Participants & Criques
- School of Public Health

Breathing Quality Hir is not a luxury good, yet a constitutional right

Thank you for your attention !!