

VINOBA BHAVE UNIVERSITY, HAZARIBAG - 825301

Hon'ble President of India, Shri Pranab Mukherjee graced the 7th Convocation on 09th Jan 2016 as Chief Guest

Inauguration of the University Centralized Online Admission System

Sustainable Mining in Goa

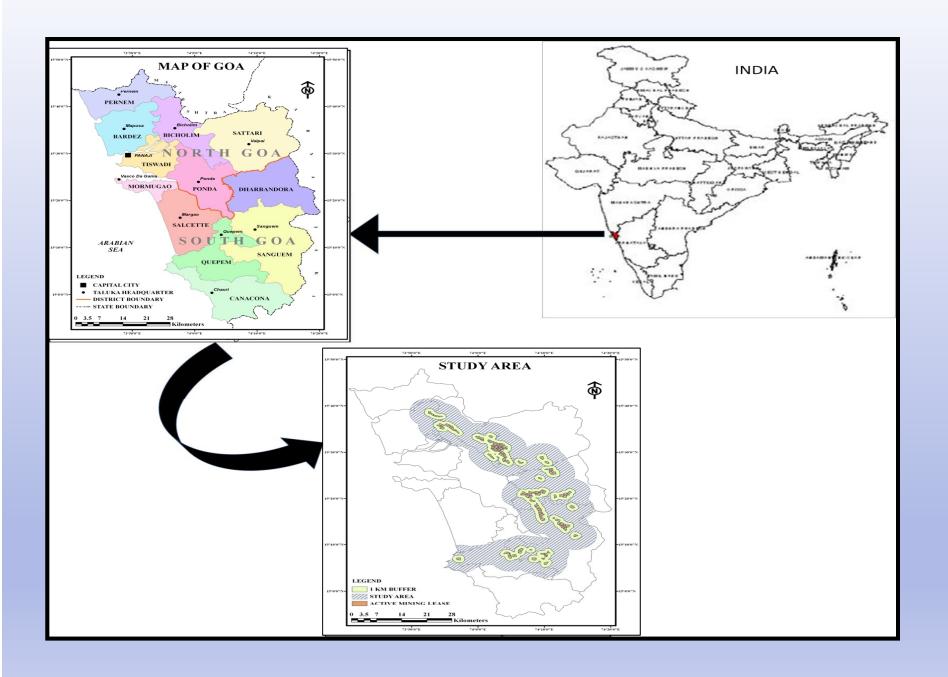
Dr. Gurdeep Singh Vice Chancellor

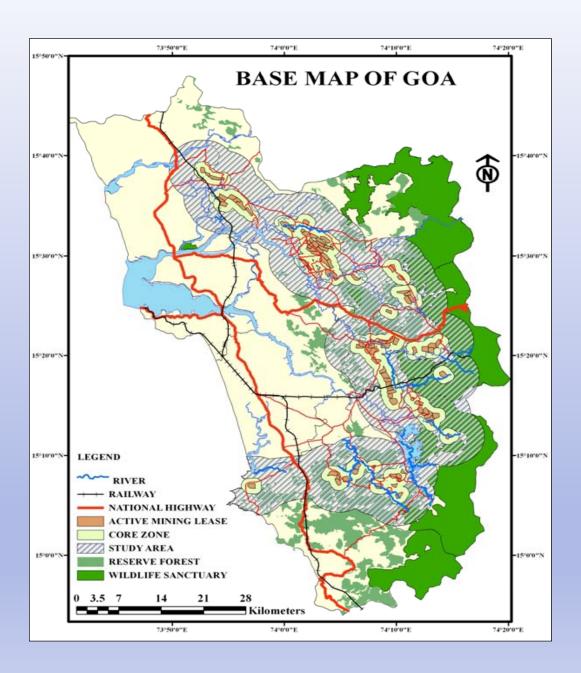
Vinoba Bhave University, Hazaribag-825301

vc@vbu.ac.in / s_gurdeep2001@yahoo.com www.gurdeepsingh.in

Major Controversial Mines

- Aravali Mining Banned: The Supreme Court on February 19, 2009, ordered closure of 157 of the 261 mines in the Aravalli hills in Rajasthan.
- Kudremukh Iron ore Mine, Karnataka
- East coast Bauxite Mine, Orissa
- North-Eastern Coalfields, Assam
- Gandhmardhan Bauxite Mines
- Lime Stone Mines in Doon Valley
- Iron Ore Mines in Singbhum
- Iron Ore Mines in GOA and Bellary- Hospet Region
- Panna Diamond Mine
- Jharia Coal Mines, Jharkhand


Recent Controversies in Mining Areas

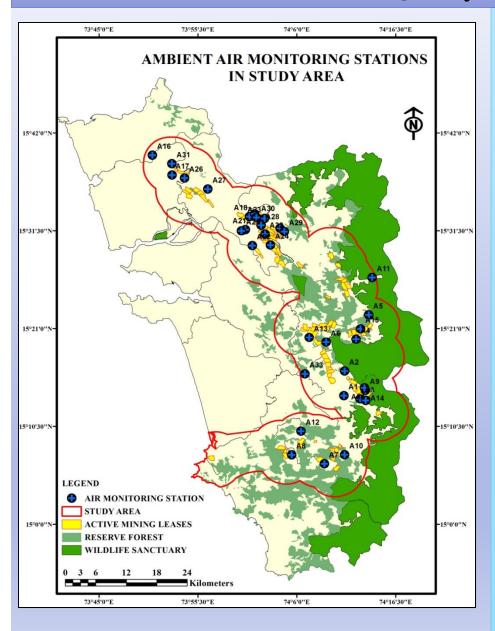

- Ban on Mining in Karnataka: Hon'ble Supreme Court of India banned mining in Karnataka in July 2011 in the wake of the Karnataka Lokayukta report about irregularities in the mining sector. The Hon'ble Supreme Court allowed resumption of mining operations in Category 'A' and 'B' (108) mines with a cap on production of 30 MTPA in April 2013.
- Ban on Iron Ore Mining in Goa: Hon'ble Supreme Court of India had imposed a blanket ban on mining operations of Goa in October 2012 due to certain illegalities as reported by Justice Shah Commission. Hon'ble Supreme Court has lifted the ban in Goa on 21 April 2014 and imposed a cap on production up to 20 MTPA.
- Ban on Mining in Orissa: In its recent order dated 16 May 2014, Hon'ble Supreme Court imposed a partial ban on iron ore mining in Odisha considering the findings of the Justice MB Shah Commission which establishes the prevalence of rampant illegal mining in Odisha. It stayed ban on mining in the 102 leases with no environmental clearances and 26 mining leases operating as second and subsequent renewals.

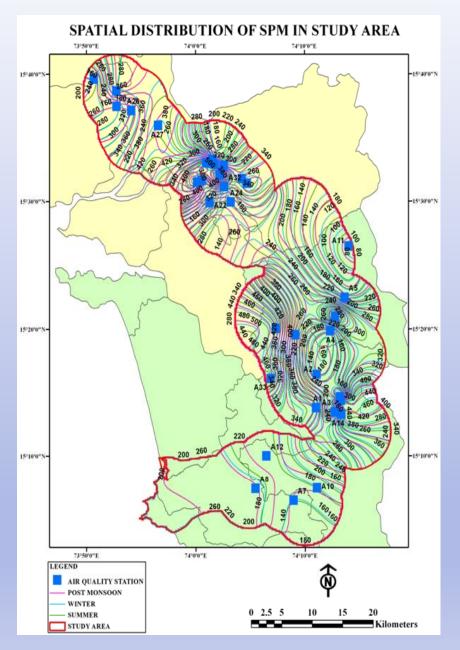
Study Area

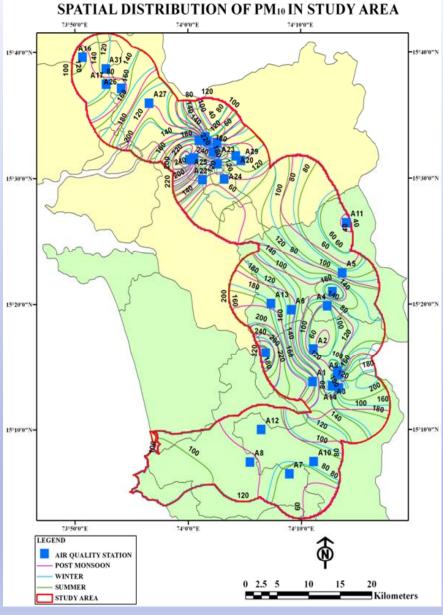
- Goa is the 25th State of India, attaining statehood in May 1987.
- It is a famous International tourist destination and attracts around 2 million tourists annually.
- lies between the latitudes 14°53'54" N & 15°40'00" N and longitudes 73°40'33" E & 74°20'13" E with geographical area of 3,702 km² and a coastline of 105 km.
- Mining is the major economic activity contributing about 20.4% of SDP to the State's economy.
- Mining is more focused in the midland of Goa, while tourism is generally limited along the coastal belt of Goa.
- Mining is concentrated in five (5) Talukas namely Bicholim, Sattari, Dharbandora,
 Quepem and Sanguem

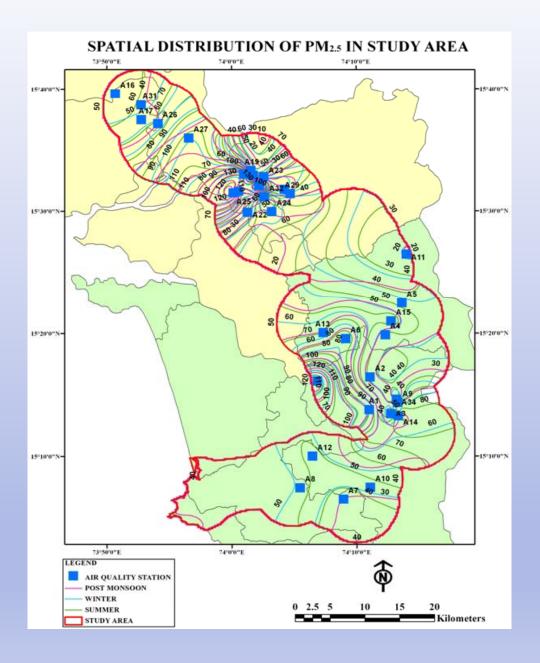
IRON ORE MINE PIT

Iron Ore Mining, Goa

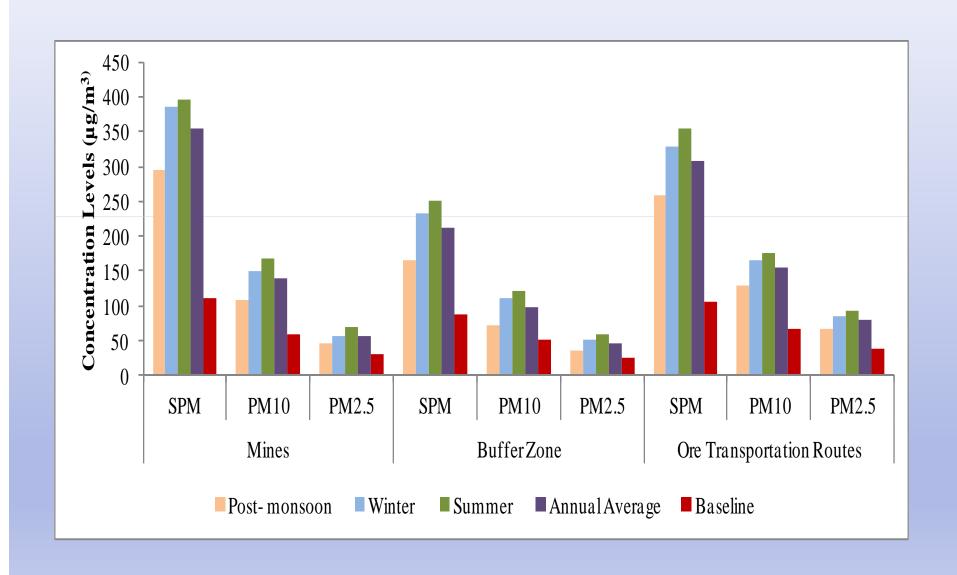

CHANGES IN TOPOGRAPHY DUE TO IRON ORE MINING


Iron Ore Mining, Goa




Ambient Air Quality within the Study Area

- •Ambient air quality monitoring was carried out at 34 locations set-up as per **IS: 5182 Part XIV** in the study area during Post-Monsoon, Winter and Summer seasons as per CPCB guidelines / NAAQS.
- •The monitoring locations are further classified under three categories to emphasize & characterize the sources responsible for particulate matter:
 - 1. Stations within Mines (8 stations)
 - 2. Stations in Buffer Zone along Core mining activities (12 stations)
 - 3. Stations along Ore Transportation Route (14 stations)



Ambient Air Quality Status in the Study Area with respect to Particulates (SPM, PM_{10} and $PM_{2.5}$)

Locations		Mines		Buffer Zone			Ore Transportation Routes			
Particula	ites	SPM	PM ₁₀	PM _{2.5}	SPM	PM ₁₀	PM _{2.5}	SPM	PM ₁₀	PM _{2.5}
Permissible Limi Basis) (μg		500	100	60	200	100	60	500	100	60
Observed Range of Concentration Levels	Post - monsoon	256-437	85 - 135	39-51	70-214	38 - 86	20-41	138-423	64-229	30-124
(μg/m³)	Winter	330-455	119-180	46-66	75-326	40-155	19-72	160- 547	75 - 274	35-145
	Summer	316-469	113-195	53-84	83-374	41-178	21-90	161- 625	77 - 294	35-156
	Annual Average	313-452	115-167	48-63	75-290	39-133	20-63	152- 509	72 - 252	33-133
	Baseline	89-153	48 - 67	26-35	48-100	26-72	16-34	69 -178	39 - 105	24-80
Average Concentration	Post- monsoon	295	108	45	166	71	35	259	130	67
Levels	Winter	385	150	57	233	111	51	330	166	86
(μg/m ³)	Summer	397	169	70	250	122	58	354	176	92
	Annual Average	356	140	56	212	99	47	309	155	80
	Baseline	111	58	30	88	51	26	107	68	38
98 Percentile Concentration	Post- monsoon	419	133	51	213	84	41	417	228	123
Levels (μg/m ³)	Winter	448	179	66	325	153	72	533	270	142
	Summer	462	195	84	370	176	84	607	291	152
	Annual Average	442	179	66	289	132	63	500	251	132
	Baseline	149	67	35	100	71	33	164	101	73

Observed Concentration Levels of Particulates (SPM, PM_{10} and $PM_{2.5}$)

Observations

SPM

- All stations within Mines shows concentration value below permissible limit
- 7 stations within Buffer Zone shows concentration values above permissible limit
- 10 stations along Ore-Transport Route shows concentration above permissible limit
- 8 stations out of 34 stations shows concentration value above permissible limit

PM_{10}

- All stations within Mines have concentration above permissible limit
- 6 stations within Buffer Zone have concentration above permissible limit
- 9 stations along Ore-Transportation Route have values above permissible limit
- 23 stations out of 34 stations have concentration values above permissible limit

PM2.5

- 2 stations within Mines have their concentration value above permissible limit
- 2 stations within Buffer Zone have concentration above permissible limit
- 9 of stations along Ore-Transportation Route have values above permissible limit
- 13 stations out of 34 have concentration values above permissible limit

AIR QUALITY INDICES (USEPA)

Air Quality Index Values	Levels of Health Concern	Colours	Health Concern
0-50	Good	Green	Air quality is satisfactory and poses little or no health risk.
51-100	Moderate	Yellow	Air quality is acceptable; however, pollution in this range may pose a moderate health concern for a very small number of individuals. People who are unusually sensitive to ozone or particle pollution may experience respiratory symptoms.
101-150	Unhealthy for Sensitive Group	Orange	Members of sensitive groups may experience health effects, but the general public is unlikely to be affected. People with heart or lung disease, older adults, and children are considered sensitive and therefore at greater risk.
151-200	Unhealthy	Red	Everyone may begin to experience health effects. Members of sensitive groups may experience more serious health effects.
201-300	Very Unhealthy	Purple	AQI values between 201 and 300 trigger a health alert, meaning everyone may experience more serious health effects.
Above 300	Hazardous	Maroon	AQI values over 300 trigger health warnings of emergency conditions. The entire population is even more likely to be affected by serious health effects.

Comparison of Annual Average and Base Line Air Quality Index at Various Mines

ode	ode		PM_{10}		$PM_{2.5}$		O_2	NO _X	
Station Code	Station Name	Annual	Base Line	Annual	Base Line	Annual	Base Line	Annual	Base Line
A9	Tollem Mine	101	54	137	90	22	19	7	6
A13	Codli Mine	115	44	152	74	22	14	7	3
A14	Bombod Mine	98	49	145	77	21	14	7	3
A15	Bimbol Mine	100	52	126	72	22	14	7	3
A29	Pissurlem Mine	90	57	137	83	21	14	6	4
A30	Harvalem Mine	86	55	128	84	19	14	6	4
A31	Advalpale Mine	82	52	116	75	22	15	6	3
A32	Velguem Surla Mine	81	52	118	79	21	14	6	3

Comparison of Base Line Air Quality Index with Annual Average Air Quality Index of Buffer zone

de		PM_{10}		PM _{2.5}		SO ₂		NO _X	
Station Code	Location	Annual	Base Line	Annual	Base Line	Annual	Base Line	Annual	Base Line
A2	Dudal Village	65	41	106	67	18	16	5	5
A3	Tudou Village	67	39	104	74	19	16	5	4
A4	Sigao Village	68	44	104	74	18	17	5	4
A11	Tambadi Surla	36	24	60	51	13	9	3	3
A16	Revora Village	73	46	110	67	21	13	5	3
A17	Tivim Village	76	41	120	65	19	13	6	3
A19	Harvalem Village	76	44	122	73	19	13	5	3
A22	Surla Village	88	57	145	87	19	15	6	4
A23	Honda Village	90	59	143	82	21	16	7	4
A24	Velguem Village	80	55	116	74	19	15	6	4
A26	Assonora Village	80	54	132	81	19	15	6	4
A34	Darguina Village	67	45	91	66	19	12	6	3

Comparison of Base Line Air Quality Index with Annual Average Air Quality Index of Ore Transportation Routes

		PM_{10}		PM _{2.5}		SO ₂		NO _X	
Station Code	Location	Annual	Base Line	Annual	Base Line	Ann ual	Base Line	Ann ual	Base Line
A1	Ugeum Village	105	60	163	92	22	20	7	5
A5	Mollem Village	63	42	99	81	18	15	6	5
A6	Carmonem Village	94	54	157	88	21	17	7	5
A7	Sulcorna Village	59	42	85	81	18	16	5	5
A8	Maina Village	68	54	112	84	18	17	6	5
A10	Curpem Village	62	47	97	69	18	13	5	3
A12	Rivona Village	62	36	102	74	19	16	6	4
A18	Cudnem Village	129	51	176	85	22	13	8	3
A20	Pissurlem Village	98	68	158	121	19	15	6	4
A21	Navelim Village	120	66	172	121	29	20	7	5
A25	Amona Village	149	76	188	160	38	17	10	5
A27	Bicholim Town	106	58	161	89	22	15	8	4
A28	Sonshi Village	147	67	190	99	21	11	9	3
A33	Sanvordem Village	146	63	186	84	22	14	9	4

Comparison of Base Line Air Quality Index with Annual Average Air Quality Index of Hotspots

	PM	I ₁₀	PM _{2.5}		SO ₂		NO _X	
Location	Annual	Baseline	Annual	Baseline	Annual	Baseline	Annual	Baseline
Sonshi Junction	1245	87	710	152	32	21	19	8
Navelim - Maina Junction	1098	133	669	169	51	38	19	13
Navelim Junction	996	96	561	132	41	29	18	7
Sanquelim Junction at PHC	717	63	445	137	28	19	16	9
Surla-Tharmata Junction	877	72	542	151	23	15	18	6
Pilgao-Sarmanas Junction	870	70	515	133	24	16	17	6
Honda Tisk	556	58	395	116	26	15	17	9
Pale Bazar	1100	90	565	155	22	13	13	6
Usgao, Wadakade	1078	88	673	164	23	18	19	9
Dharbandora-Sacordem Tisk	1015	74	635	156	22	12	18	7
Dabal/Codli Tisk	1232	87	735	162	24	15	20	6
Assonora Tisk	629	65	402	126	24	19	17	10
Sanvordem Junction	1384	93	823	143	22	16	21	7
Tilamol Junction	1168	66	701	154	22	13	19	9
Sigao Tisk	802	61	523	135	22	10	17	5

Observations

Pollutant	Annual	Baseline
PM 10	 Only 1 station have shown a good health status 24 stations have moderate health concern 9 were representing unhealthy condition for sensitive group. 	 14 of stations have shown a good health status 20 had moderate health concern.
PM 2.5	 •5 stations have shown moderate health concern • 19 shows unhealthy condition for sensitive group • 10 have unhealthy conditions prevalent. 	 •31 of stations have shown moderate health concern •2 have unhealthy condition for sensitive group • 2 have unhealthy conditions prevalent

SURFACE WATER QUALITY EVALUATION

•36 stations were established for monitoring the surface water quality

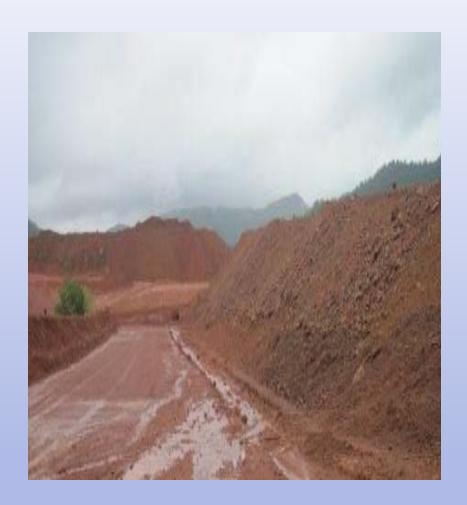
• The Water Quality Parameters which were significantly impacted were Turbidity, Chloride and Sulphate in major areas and Iron and Manganese at few locations

Observed Concentration of Various Water Quality Parameter

Water Quality Pa	rameter	рН	Turbidity (NTU)	Electrical Conductivity (µMhos/cm)	TDS (mg/L)	Chloride (mg/L)	Sulphate (mg/L)
Permissible Limits	IS:10500, 1991	6.5-8.5	5 (10*)		500 (2000*)	250 (1000*)	200 (400*)
	IS:2296, 1982	6.5-8.5	_	2250	2000 (max)	600 (max)	1000 (max)
	IS:2490, 1981 (Inland Surface water)	5.5-9.0	_	_	2100	1000	1000
Observed Concentration Range	Post-monsoon	6.3-8	4 to 10	19 to 850	11 to 720	3 to 2955	9 to755
Kange	Winter	6.1-8.1	4 to 12	25 to 883	18 to 735	6 to 2991	5 to 763
	Summer	6.2-7.9	4 to 17	38 to 1100	21 to 876	17 to 3010	7 to 822
	Monsoon	5.7-7.3	9 to 350	38 to 428	17 to 629	6 to 1664	6 to71
	Annual Average	5.4- 6.9	6 to 94	30 to 773	19 to 664	10 to 2586	5.5 to 598
	Baseline	6.47.9	2 to 9	15 to 750	9 to 439	9 to 1400	3 to 70
Average Concentration Value	Post-monsoon	7.1	6.63	305.72	215.86	403.1	219.25
varue	Winter	7.1	7.16	344	232.61	518.36	125.61
	Summer	7	8.16	416.86	249	508.3	131.5
	Monsoon	6.54	48.91	131.4	113	227.361	21.4
	Annual Average	6.13	17.83	299.66	202.7	387.6	82.8
	Baseline	7.31	5.5	190	138	214	6.8
* Permissible Limits in the Absence of Alternative Source							

Class of water	Impacts
	In Cudnem River in Arvalem of Bicholim Taluka and Sanguem River in Sanguem taluka, the Impact of Turbidity is rated high on the Significant point rating
В	High impact on Chloride Concentration is also seen in this area
	Sanguem River in Sanguem taluka also has a very high significant rating in terms of turbidity
C	Turbidity, Iron (Fe), Manganese (Mn), Sodium, Potassium and Nitrate have moderate significance rating in Opa treatment plant
	Considerable concentration levels of Manganese and Iron
D	High values of Turbidity and moderately high Concentration levels f Chloride, Sodium, Manganese and Iron
	Khandepar River in Shigao was rated high in turbidity and moderate in metal content
E	Sanvordem Nallah and Kushavati river Significant Values of Turbidity was observed.
Jetty Points	Turbidity, Sulphate, Fe and Mn was found to have high

MANAGEMENT STRATEGIES



APPLICATION OF NATURAL (COCO) FILTERS FOR SILT CONTROL

MANAGEMENT STRATEGIES

Garland Drainage Channel along the Toe of the Dump

Series of silt arrestors lined with Coco filter

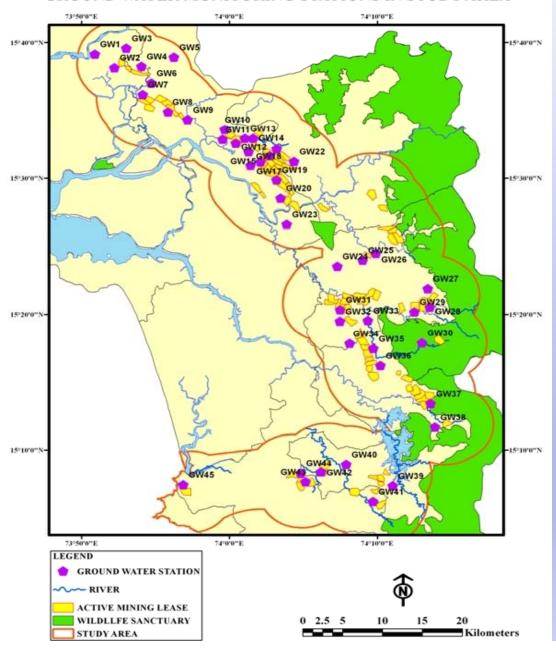
MANAGEMENT STRATEGIES

Settling Ponds



Check dams

MANAGEMENT STRATEGIES

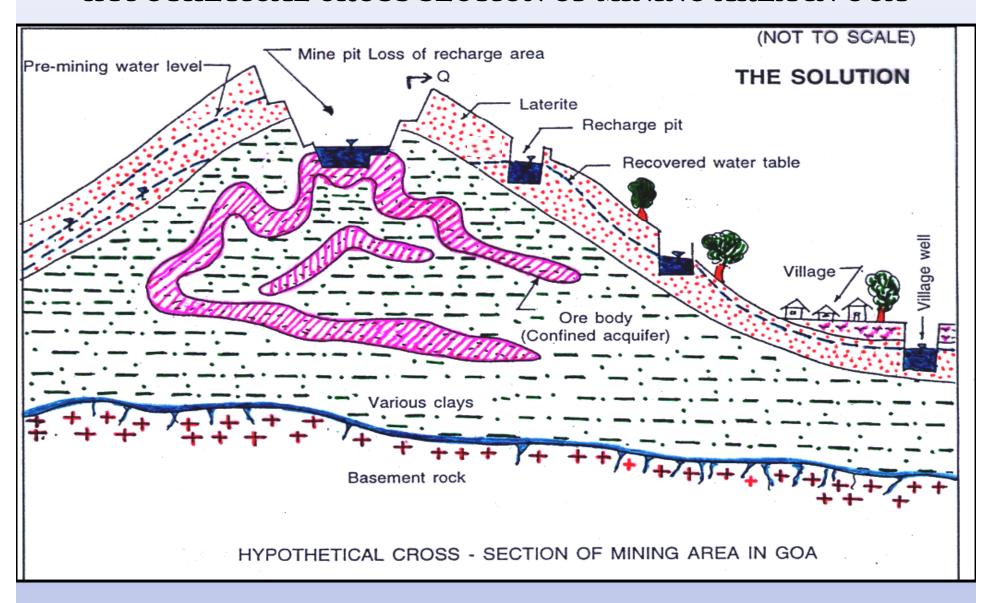

Zig-Zag bunds

Clean water before leaving mining premises

Ground Water Scenario

GROUND WATER MONITORING STATIONS IN STUDY AREA

- 45 wells were selected for water quality and availability studies.
- > 22 Locations in North Goa
- > 23 Locations in South Goa


Dynamic Ground Water Resource (March 2009)

PARTICULARS	NORTH GOA	SOUTH GOA
(1) Net ground water availability (ham)	7,802	5,473
(2) Total Annual Ground Water Draft (ham)	2,547	1,837
(3) Projected demand for domestic & industrial uses upto 2025 (ham)	2,110	1,639
(4) Stage of Ground Water Development (%)	33 % (SAFE)	34 % (SAFE)

GROUND WATER CONTROL & REGULATION

PARTICULARS	NORTH GOA	SOUTH GOA
(1) Number of Over Exploited (OE) Blocks	NIL	NIL
(2) Number of Critical Blocks	NIL	NIL
(3) Number of Notified Blocks	NIL	NIL

HYPOTHETICAL CROSS SECTION OF MINING AREA IN GOA

Groundwater Augmentation

- Pumped groundwater from the active mining pit is being sent to the storage water pit, which is situated at a higher elevation within the micro- watershed covering the mine lease area.
- Mining operations are ensuring prolonged duration of stream flow through controlled releases of surplus water from the water storage pit inside the mines in the upstream
- The storm water management measures through garland canals at the toe of benches are further providing storage of surface water within the mine.
- Above measures are ensuring water availability in the stream for recharging dug wells

Taluka wise Seasonal variation of Water Quality Index for Groundwater

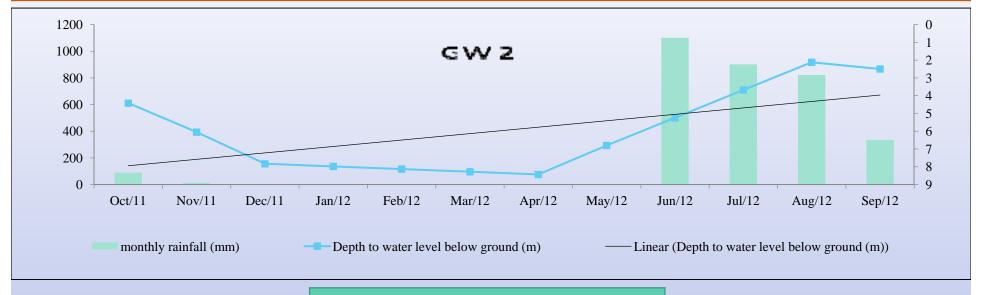
Taluka	Post-Monsoon	Rank	Winter	Rank	Summer	Rank	Monsoon	Rank	Annual Average	Rank	Status
Bicholim	8.76	1	12.06	2	8.82	2	9.24	2	9.72	1	Very Good
Sattari	8.50	2	18.00	1	0.00	5	9.50	1	9.00	2	Very Good
Dharbandora	7.63	5	8.75	5	8.13	4	6.88	4	7.84	5	Very Good
Sanguem	8.25	3	10.50	3	9.13	1	7.5	3	8.84	3	Very Good
Quepem	7.71	4	10.29	4	8.43	3	6.86	5	8.32	4	Very Good

Seasonal Fluctuation of Water Table

S. No.	Season	No. of Wells	Fluctuation Levels (m bgl)
		2	1.2-2.5
1	Post-Monsoon	14	2.5-4.5
		21	4.5-6.5
		8	>6.5
		2	1.2-2.5
2	Winter	6	2.5-4.5
		24	4.5-6.5
		13	>6.5
		2	1.2-2.5
3	Summer	6	2.5-4.5
		20	4.5-6.5
		13	>6.5
		19	1.2-2.5
4	Monsoon	18	2.5-4.5
		4	4.5-6.5
		4	>6.5

Well Hydrographs

Total 38(82.2%) wells in the study area show increasing trend. Increasing trend is an indicative of surplus amount of groundwater being retained in these aquifers during the study period.



Only seven(15.5%) wells in the study area shows no trend and reason may be attributed to the balance in the recharge and discharge of these well.


The well hydrograph indicates that the water levels in the phreatic aquifers response prominently to rainfall recharge.

Well Hydrographs Showing Increasing Trend

GW 2: Kansa (Tivim)

Well Hydrographs Showing No-trend

GW 1: Revora

Management Strategies

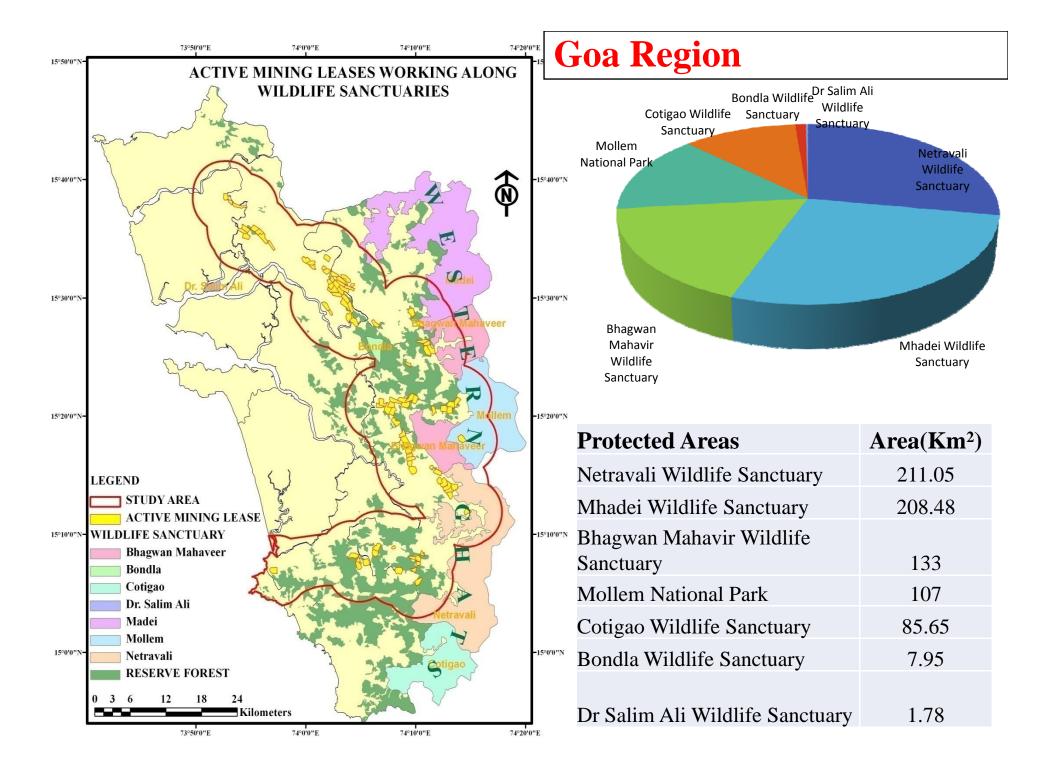
Series of silt arrestors lined with Coco filter

Zig-Zag bunds

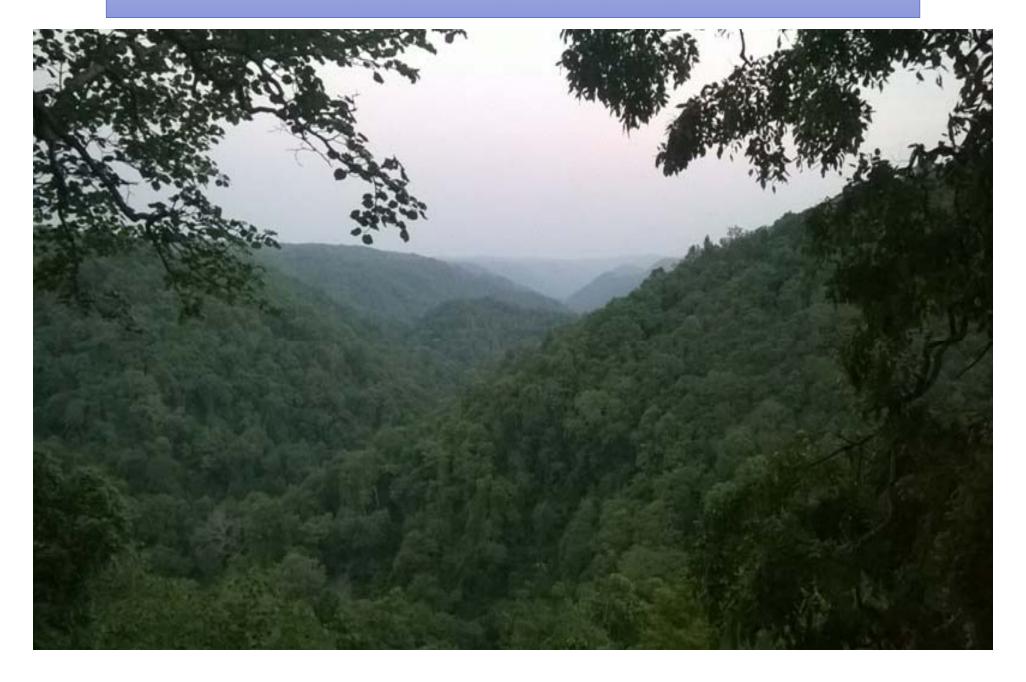
Garland Drainage Channel along the Toe of the Dump

Check Dams

Recharge Structure



Demarcating ESZs


- To protect the exceptionally rich biodiversity of the Western Ghats from loss due to unsustainable use of natural resources.
- To protect and guard the natural and cultural heritages.
- To prohibit the unsustainable use of natural resources.
- To ensure sustainable development in the Ecologically Sensitive Regions.

Mhadei Wildlife Sanctuary

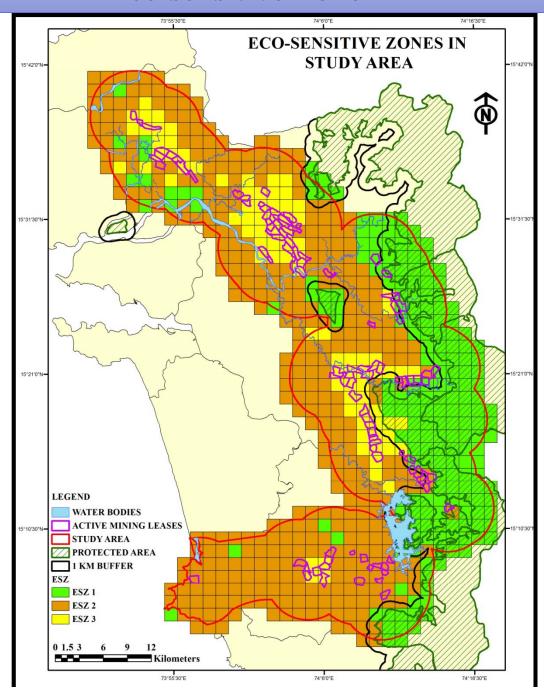
Mollem National Park

View of Western Ghats

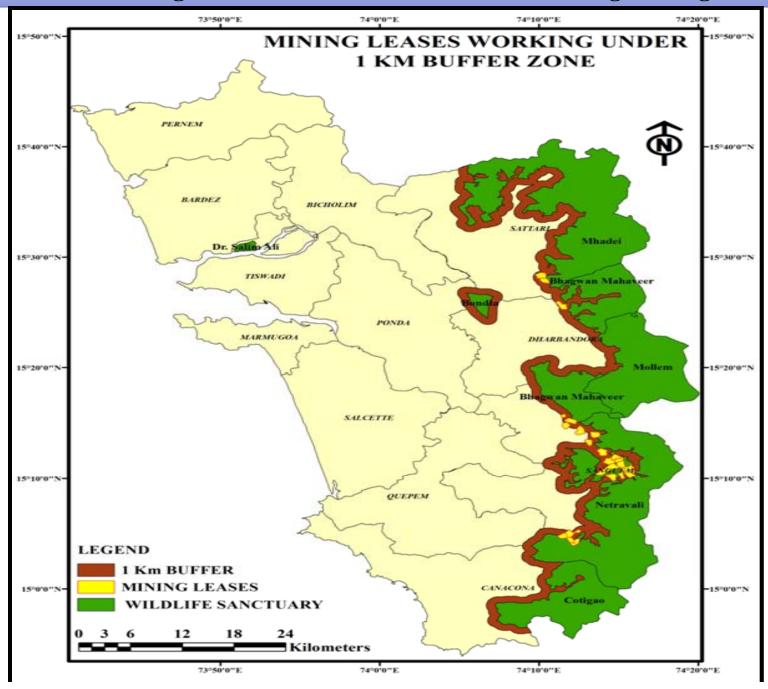
Methodology to categorize and valuing the attribute layers

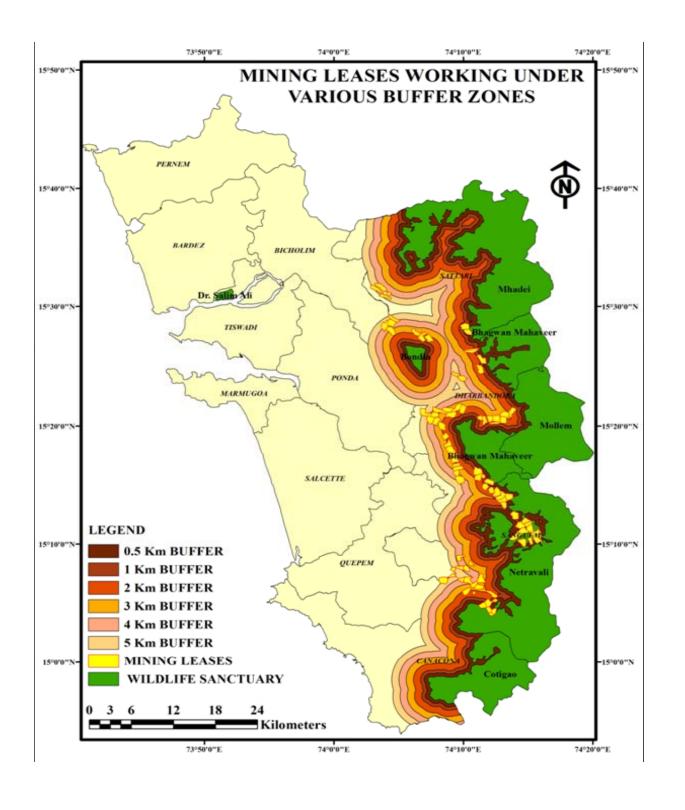
Sl No	Attributes	Category	Valuing	Criteria
1	Biological	BHV (Biologically Highly	10	Very dense forest, only water body,
	feature	Valued)		dense forest with water body
		BMV (Biologically Modestly		Moderately dense forest, with water
		moderately Valued)	5	body
		BLV (Biologically Less	0	Barren land
		Valued)		
2	Geo-	EHS (Environmentally Geo-	10	High Slope aspect
	morphological	climatically Highly		Moderate slope aspect
	feature	Sensitive)		Slight slope aspect
		EMS (Environmentally Geo-	5	
		climatically Moderately		
		Sensitive)		
		ELS (Environmentally Geo-	0	
		climatically Less Sensitive)		
3	Places of	VIPP (Very Important		Heritage sites, Important religious sites,
	public	through Public Perception)	10	sanctuary
	importance	MIPP (Moderately Important		Agriculture, Important hospitals
		through Public Perception)	5	No such site
		LIPP (Less Important		
		through Public Perception)	0	

Methodology to combine the valued layers and grading the ESAs


Combined Value from biological and geomorphological factors	Value from Public Perception	ESA Grade	Extent of protection
	5-10	Grade 1	Highly Protected
20-10	0-5	Grade 2	High protection with regulated activities
0-10	0-10	Grade 3	Regulated Protection

Activities in ESZs


Prohibited	Regulated
Commercial mining	Felling of trees
	Establishment of hotels and resorts
Setting of saw mills	Drastic change of agriculture system
Setting of industries causing pollution (water, air, soil, noise etc.)	Commercial use of natural water resource including ground water harvesting
Commercial use of firewood	Erection of electrical cable
Establishment of major Hydroelectric project	Fencing of premises of Hotels and lodges
Use or production of any hazardous substance\	Use of polythene bag by the shopkeeper
Undertaking activities related to tourism like- Overflying the national park area by any aircraft or hot air balloon	Widening of road
Discharge of effluent and solid waste into natural water bodies/ terrestrial areas	Movement of vehicular traffic at night
-	Introduction of exotic species
-	Protection of hill slopes and river bank

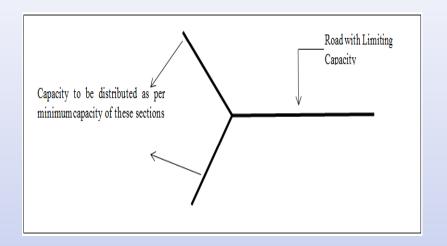

Source: Guidelines by MoEF (F.No.1-9/2007 WL-I (pt) dated 9th February 2011)

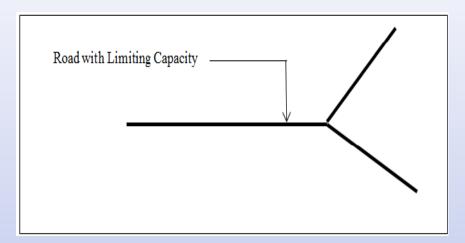
Eco-sensitive Zone

Buffer Zones along the Wildlife Sanctuaries with Existing Mining Leases

Need of Infrastructural based Capping

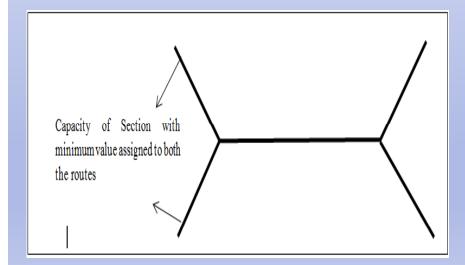
- Major Source of air pollution is identified as ore transportation activity
- This is primarily due to huge congestion owing to interference of ore transport route with that of public transport
- •Thus, there is a need of capping of ore transportation of iron ore.

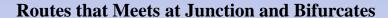


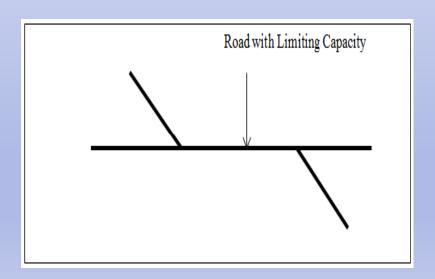


Major Routes

- 1. Adawlpale to Sirsai Jetty
- 2. Shrigao to Sirsai Jetty
- 3. Shrigao to Kalvim Jetty
- 4. Dahbdhaba to Sarmanas Jetty
- 5. Sonshi to Amona Jetty
- 6. Sanquelim to Amona Jetty
- 7. Honda to Navelim(Maina)
- 8. Sonshi to Khazan Jetty (Vagus)
- 9. Ambesi to Cotambi Jetty
- 10. Digneum to Surla Jetty
- 11. Codli to Amona Jetty
- 12. Codli to Capxem Jetty
- 13. Shigao to Capxem Jetty
- 14. Costi to Sanvordem Jetty
- 15. Collem to Amona Jetty
- 16. Tollem to Shelvona Jetty
- 17. Sulcorna to Shelvona Jetty
- 18. Maina to Shelvona Jetty


Methodology for Assigning Capacity of Ore Transportation





Routes that Meets at Junction and Coalesce

Route that Bifurcate at Common Junction

Auxiliary Routes Meeting a Common Main Route

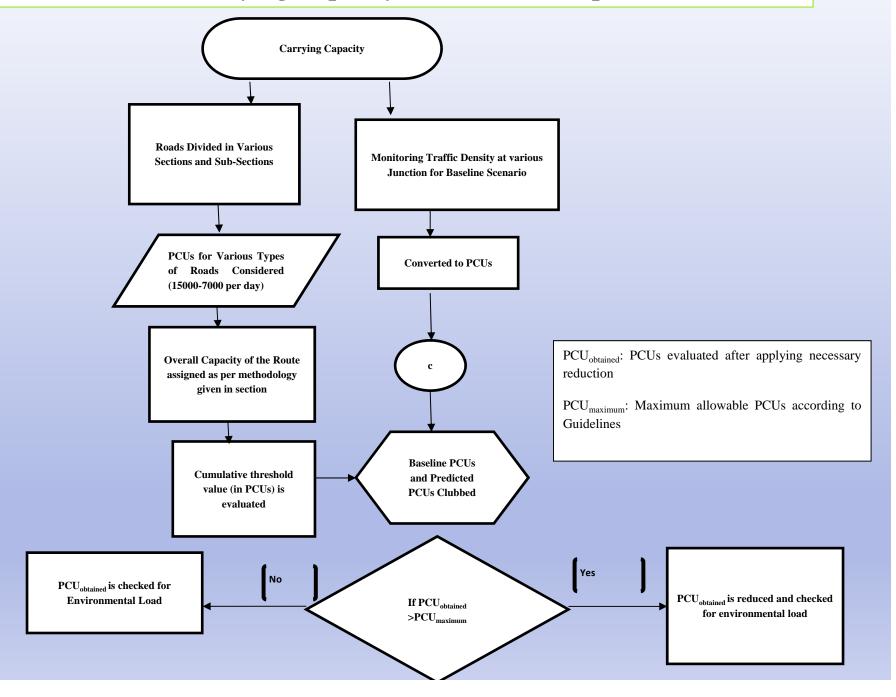
Algorithm for evaluation of Capacity of Ore Transportation

EACH ROUTE DIVIDED INTO SECTIONS BASED ON ROAD CONDITIONS, TERRAIN ETC.

VALUE OF PCU PER DAY DESIGNATED TO EACH SECTION AS PER IRC GUIDELINES

65% OF REDUCTION IN PCU PER DAY DUE TO RESTRICTED HOURS OF TRANSPORTATION

CONVERSION FACTOR OF 3 FOR PCU TO NUMBER OF TRUCK CONVERSION

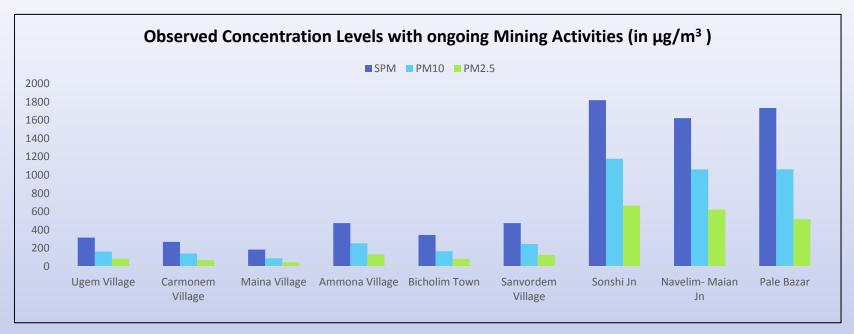

AS THE TRAFFIC IS TWO WAYS FOR ALL THE ROADS ACTUAL NUMBER OF TRUCKS CARRYING THE ORE PER DAY IS HALF OF THE NUMBER

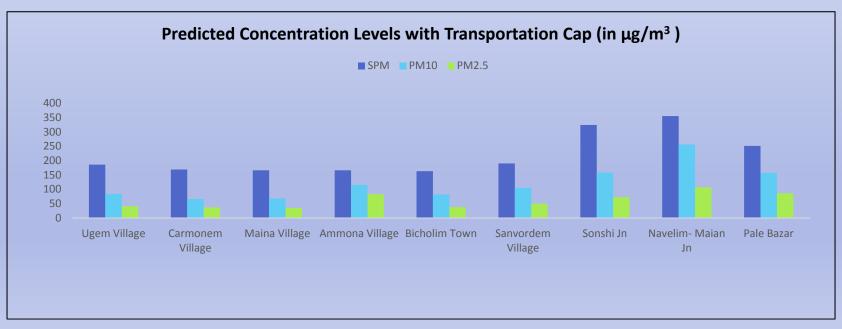
ORE TRANSPORTATION/DAY= 10*NUMBER OF TRUCKS IN ONE WAY TRAFFIC

CARRYING CAPACITY OF SECTION=235* ORE TRANSPORTATION/DAY

CARRYING CAPACITY OF ROUTE=CARRYING CAPACITY OF SECTION WITH MINIMUM VALUE.

Determination of Carrying Capacity of the Ore Transportation Routes




Traffic Monitoring and Evaluation of Road Condition

Traffic Monitoring Data (in PCU) during Ongoing Mining and Baseline Scenario

Routes	Allowed Design PCU	Car PCU		Two wheeler PCU		Heavy vehicle PCU	
	(as per IRC)	Ongoing	Baseline	Ongoing	Baseline	Ongoing	Baseline
Adawlpale to Sirsai Jetty (5.5 km)	1200 /hour	2434	3552	1823	2216	2758	1311
Shrigao to Sirsai Jetty (6.8 km)	11000 /day	2756	3212	1564	3016	2313	1419
Shrigao to Kalvim Jetty (4.2 km)	10000 /day	68	4	132	6	340	18
Dahbdhaba to Sarmanas Jetty (2.7 km)	1200 /hour	1432	1882	1212	1616	1613	549
Sonshi to Amona Jetty (11.2 km)	1200 /hour	256	351	288	371	1804	315
Sanquelim to Amona Jetty (7.6 km)	1200 /hour	1887	2889	1956	2062	3308	1989
Honda to Navelim (Maina) (13.7 km)	1200 /hour	1543	1918	911	1062	2124	762
Sonshi to Khazan Jetty (13.8 km)	1200 /hour	776	1021	231	561	1458	564
Ambesi to Cotambi Jetty (6 km)	1200 /hour	598	1087	677	1006	1942	495
Digneum to Surla Jetty (5.8 km)	1200 /hour	342	351	112	356	1129	150
Codli to Amona Jetty (29.8 km)	11000 /day	1988	2034	2012	2766	3667	1710
Codli to Capxem Jetty (12 km)	15000 /day	1854	1992	1665	1744	2700	1296
Shigao to Capxem Jetty (18.9 km)	10000 /day	63	0	102	0	468	0
Costi to Sanvordem Jetty (11.5 km)	11000 /day	473	546	438	566	2435	903
Collem to Amona Jetty (38.8 km)	1200 /hour	1357	1512	1232	1404	2327	540
Tollem to Shelvona Jetty (18.9 km)	11000 /day	1003	1123	1521	1404	1597	363
Sulcorna to Shelvona Jetty (28.6 km)	11000 /day	697	877	1021	984	1537	303
Maina to Shelvona Jetty (15.3 km)	10000 /day	756	895	665	877	1460	354

Cluster	Routes	Capacity after proposed Capping with 65% Restricted Hours(MTPA)	Capacity of the Cluster
	Adawlpale to Sirsai Jetty	0.81	
Advistante Biskaline	Shrigao to Sirsai Jetty	1.26	
Adwalpale-Bicholim	Shrigao to Kalvim Jetty	1.16	
	Dahbdhaba to Sarmanas Jetty	2.645	5.785
	Sonshi to Amona Jetty	2.11	
	Sanquelim to Amona Jetty	0.52	
Velguem-Pissurlem	Honda to Navelim(Maina)	1.32	
veiguein-i issuriein	Sonshi to Khazan Jetty	1.32	
	Ambesi to Cotambi Jetty	1.29	
	Digneum to Surla Jetty	1.34	7.9
	Codli to Amona Jetty	1.94	
Codli- Costi	Codli to Capxem Jetty	1.24	
	Costi to Sanvordem	1.51	4.69
0-11	Collem to Amona Jetty	1.94	
Collem	Shigao to Capxem Jetty	0.82	2.76
Tollem	Tollem to Shelvona Jetty		1.71
Maina-Sulcorna	Sulcorna to Shelvona Jetty	1.02	
	Maina to Shelvona	1.04	2.06
Total of a	Total of all Cluster		

NAAQS Independent AQI of SPM at various Ore Transportation Locations and Hot Spots for Present and Predicted Future Scenario

Station Code	Station Name	AQI with ongoing Mining Activity	AQI after Transportation Cap
A1	Ugeum Village	105	65
A6	Carmonem Village	94	56
A8	Maina Village	68	57
A25	Amona Village	149	81
A27	Bicholim Town	106	64
A33	Sanvordem Village	146	76
HS	Sonshi Jn	1074	102
HS	Navelim Maina Jn	957	147
HS	Pale Bazar	958	102

Proposed Dedicated Transport Corridors

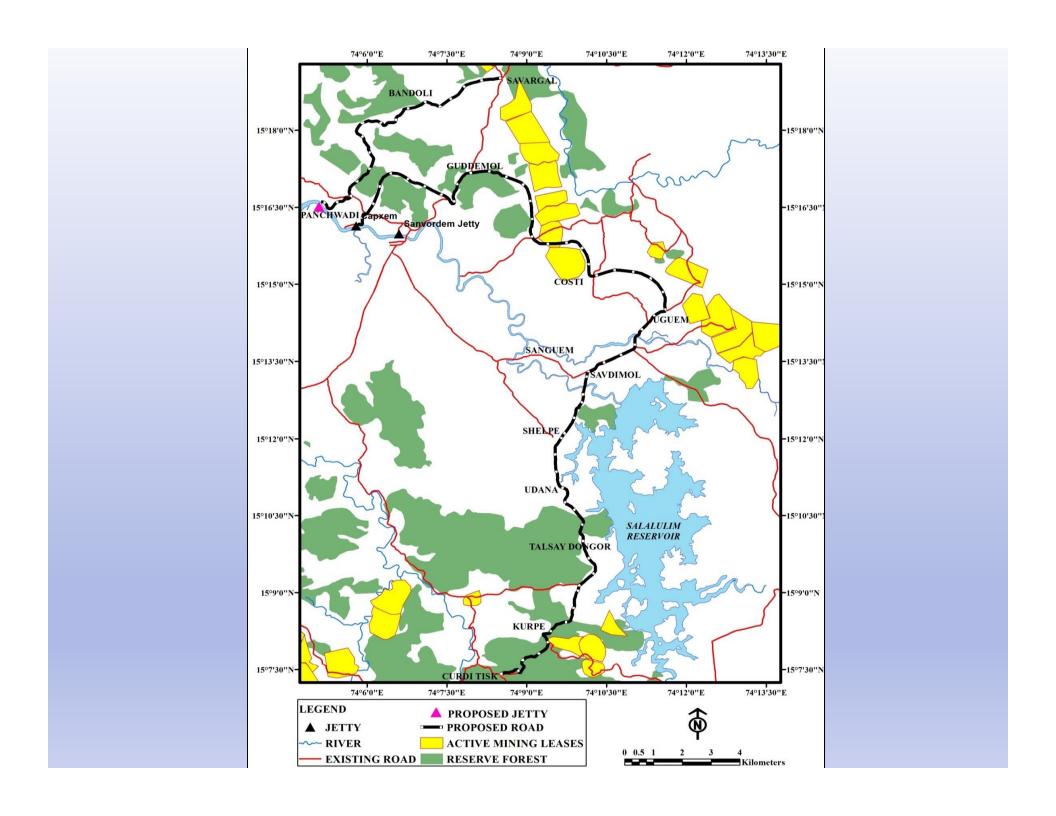
I. Bypass the Curchorem town and the Curchorem-Tilamol Road

Phasel:
Uguem to
Guddemol

Phase II:

Guddemol to the Capxem jetties

Phase III: Cudri tisk to

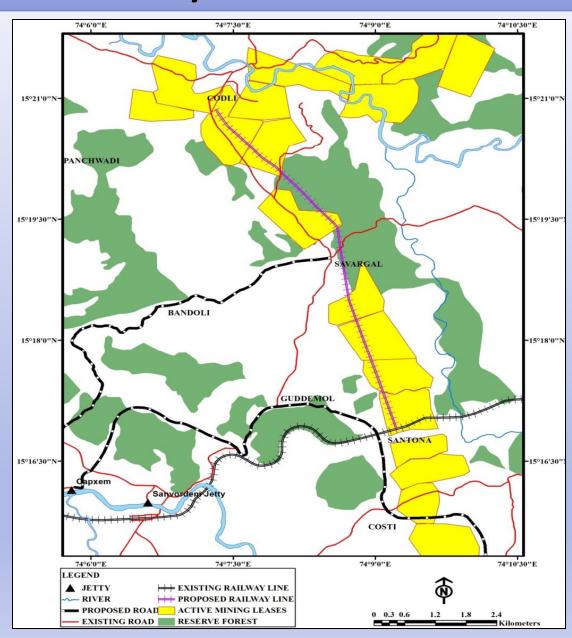

Uguem.

II. Codli Panchwadi Road

Bifurcation from SH7

Bifurcates at Savaragal to Bandoli

Bandoli to Panchwadi

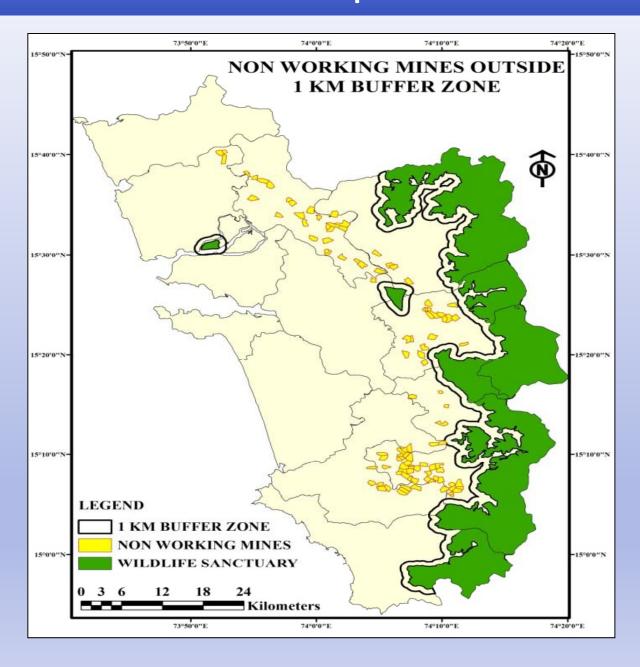


Proposed Railway Route

Codli cluster accounts about 30 % of the total iron ore production in Goa.

Railways can prove to be a good alternative

Railway route can be from Codli to Santona



Exploring Resources

- The mineral reserve should be exploited scientifically and consumed/processed in a way where they are utilized fully.
- Scientific Exploration both vertically and horizontally employing advanced geophysical techniques should be carried out to assess the exact quantity of the exploitable resources.
- Extraction of mineral resources located through exploration and prospecting has to be maximized through applying advanced scientific methods of mining, beneficiation and economic utilization.
- Exploration, extraction, processing and export activities create wealth contributing to sustainable development.

Year	Reserves in Goa (MT)	Reserves in India (MT)
1975	355.9	12667
2000	857.67	22108
2005	927.12	25249.87
2010	1,149.84	28526.16

Alternatives for Socio-Economic Impact due to Closure of Mines

Surface Water Quality Management

Retaining Wall at the Toe of the Dump

Parapet Wall Constructed Along the Toe of the Dump

Parapet Wall Constructed Along the Toe of the Dump

Check Dams

Air Quality Management

WATER TANKER FOR MINE HAULAGE ROAD DUST SUPRESSION

FIXED AUTO SPRINKLERS FOR MINERAL DISPATCH ROADS

DRILLING MACHINE EQUIPPED WITH WET DRILLING PROVISION

TRUCKS COVERED WITH TARPLUINS

Improving Environmental Conditions

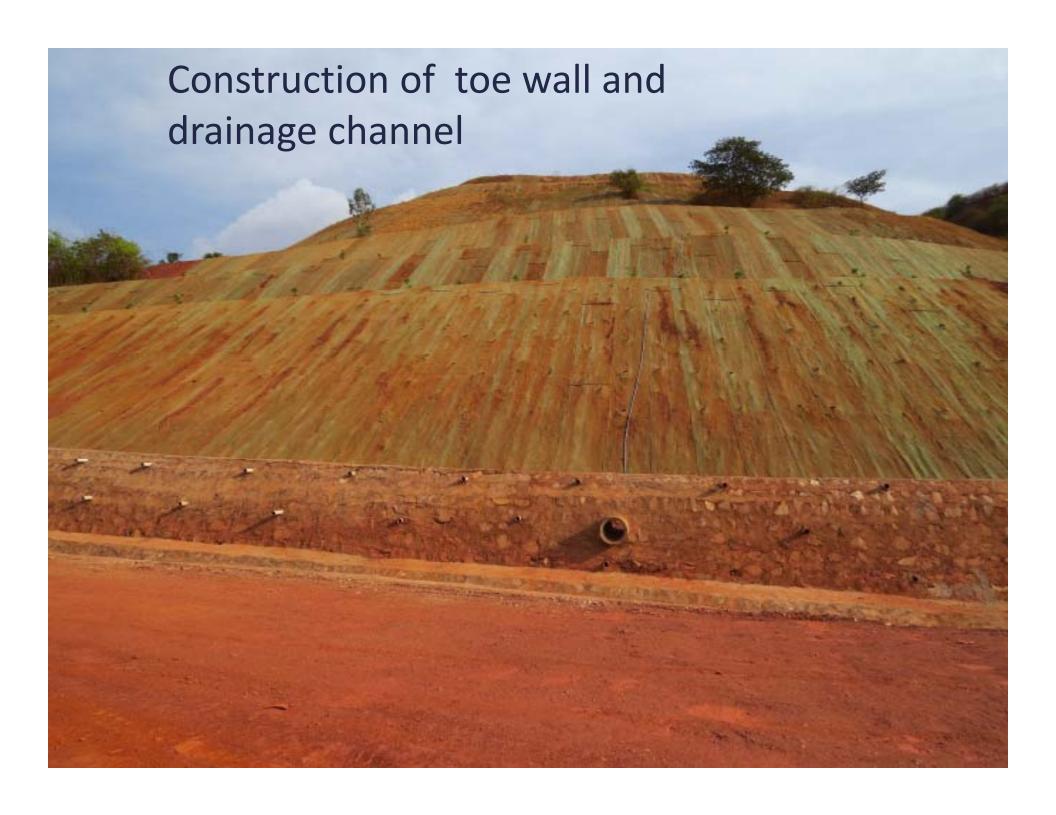
Increased awareness on the part of mine owners, managers/staff, and consultants on the principles of sustainable and scientific mining.

Many lessees have undertaken intensive exploration activity.

Quality of mine planning has improved significantly.

Much better understanding of dump planning and surface water management

Since all activities are to be located within the lease area, better land use planning has come under focus; in some cases, lessees are exploring options of backfilling.

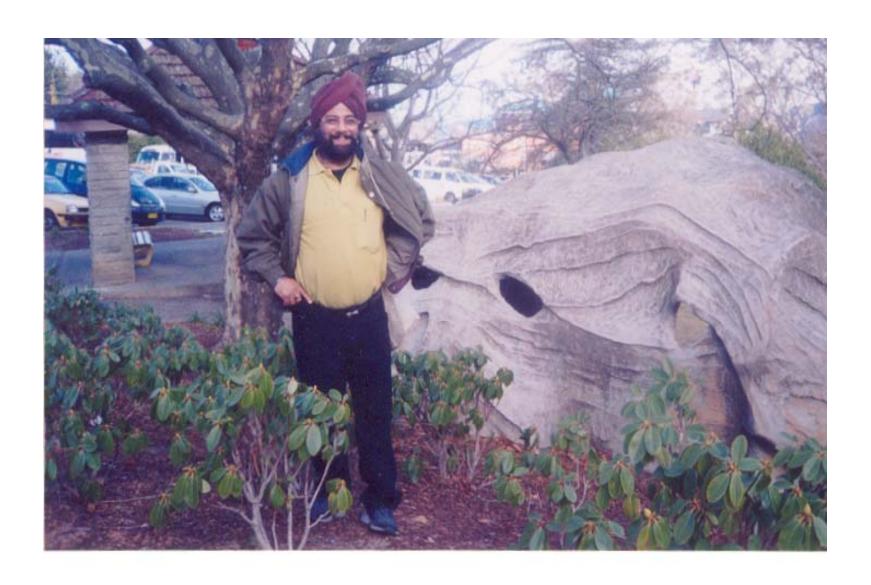

Most of the sub-grade ore is now being utilized, either through beneficiation or blending, thus leading to superior mineral conservation and minimizing old 'dumps'.

Better planning of roads and transport infrastructure; many railway sidings and rail lines are being planned; existing roads are being widened/improved; improved maintenance of roads.

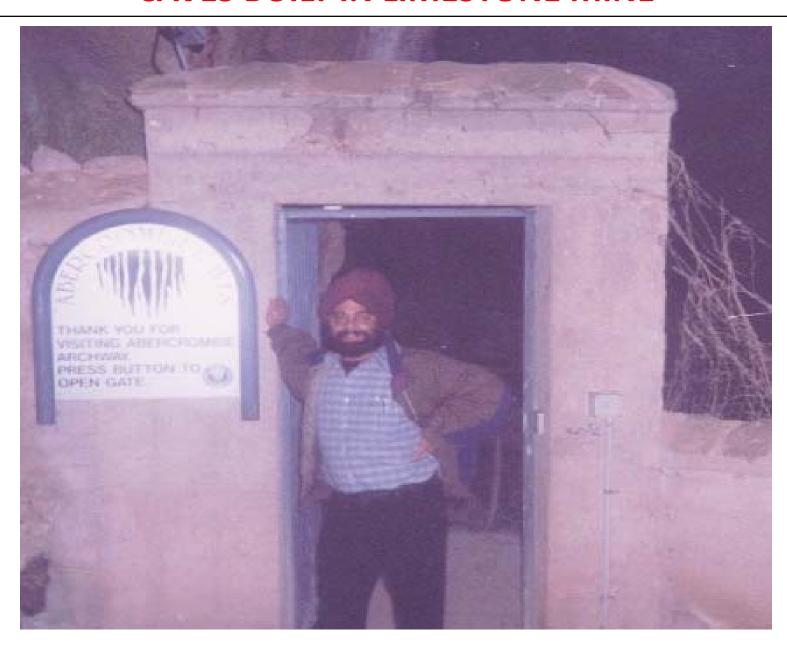
Increased focus on complying with conditions stipulated in the statutory approvals.

After Geo green blanket

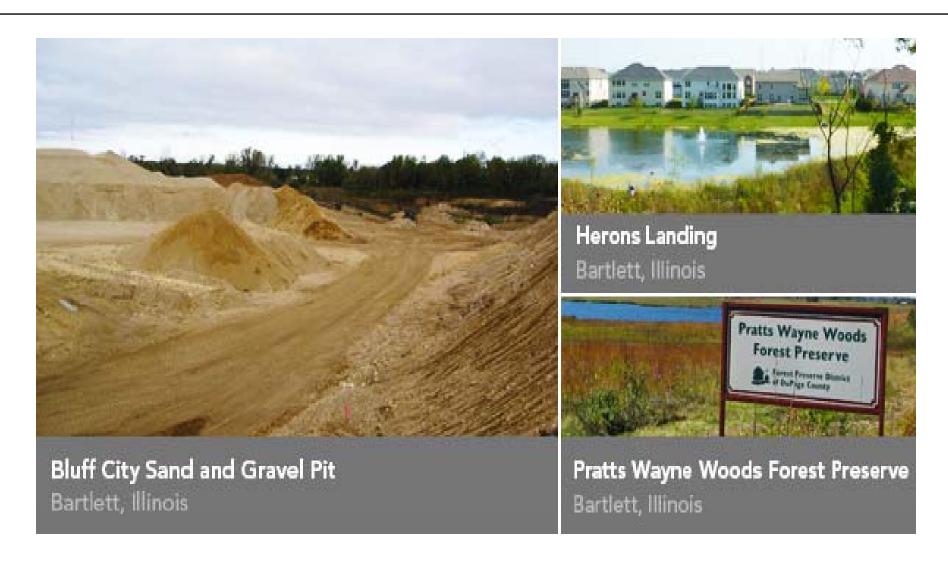
Growth after Geo green blanket



Far-off from forest area: alternative- Eco-park

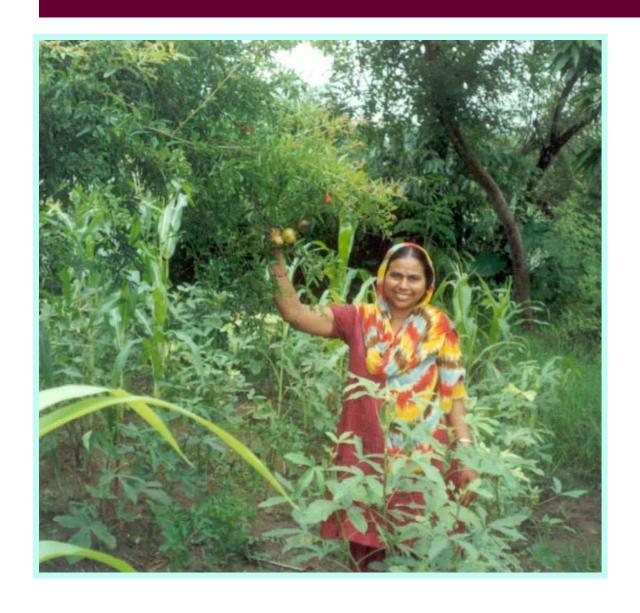


Cadia Closed Mine


Utilization/Rehabilitation of worked out mine space

CAVES BUILT IN LIMESTONE MINE

Photograph showing Barlett Illinois limestone quarry site after mine closure.



View of Horticulture Plant Garden At A. Narrain Mines

NEED BASED PLANTATION

Productivity
(Vegetables) at
Reclaimed Mine
Sites

