

INITIATION OF CEMS IMPLEMENTATION IN INDIA

SN	Events	Date				
01	DIRECTIONS UNDER SECTION 18(1)(b) OF THE WATER (PREVENTION CONTROL OF POLLUTION) ACT, 1974 and THE AIR (PREVENTION Et CONTROL OF POLLUTION) ACT, 1981 IN THE MATTER OF POLLUTION CONTROL IN 17 CATEGORY OF HIGHLY POLLUTING INDUSTRIES , CETPS AND COMMON HAZRDOUS WASTE 8 BIOMEDICAL WASTE INCINERATORSREGARDING SELF MONITORING OF COMPLIANCE	05.02.2014				
02	Same as above	02.03.2015				
Letter Empa Web/ Draft Onlir Minu Guid List o	02 Same as above 02.03.2015 Directions issued under (NGRBA) dated 27.03.2015 Letters to Chairmen of SPCBs dated 29.05.2015 Empanel Web Advertisement dated 22.04.2015 Web/Press Advertisement dated 23.04.2015 Draft Notification on online monitoring protocol dated 19.04.2015 Online Monitoring IT Protocol dated 11.06.2015 Minutes of the Meeting with Industrial Associations dated 16.06.2015 Guidelines on Effluent Monitoring dated 07.11.2014 List of CPCB Officers for 17 Categories List of 17 Categories of Industries alongwith Industry Codes (Master List of 3260)					

CEMS (Continuous Emissions Monitoring System)

The system composed of Equipment, Instrument to draw, condition, analyze the flue gas sample and provide permanent record of emissions or process control parameters continuously at real time basis is called Continuous Emissions Monitoring System (CEMS)

Benefits of CEMS

- Provides real time data.
- Remotely accessible to operator/regulator.
- Greater transparency in monitoring of performance.
- Continuous performance check of Air Pollution Control Devices and optimization of resources used.
- Time series analysis possible with continuous data.
- Reduction in regulatory cost as well as long term monitoring cost.
- Expected better compliance through self regulation by industry hence lower emission.
- Primary requirement for participation in market driven pollution control venture (ETS)

COMPONENTS OF A CEMS

- Sample Collection sampling device
- Interface Sample conditioning & transportation wherever required
- Analyzer Specific to pollutants, generates an output signal proportional to the concentration
- Calibration devices Analyzer control system, calibration gases, recording etc.
- Data Acquisition Data logging system record electrical signals in defined number of channels
- Data Handling System— Pick, calculate, record, transfer the data in report form to desired destination
- Additional Devices: Flow Rate (Velocity Monitor, Temperature sensor, Moisture monitoring device, Diluent Gas monitoring Devices

17 Categories of Industry, their emission standards and probable options for CEMS

SN	Industries	Pollutants Emission Limits	Recommended CEMS Options
1	Aluminium Smelting		
	Raw Material Handling	PM – 150	In situ PM CEMS
111	Calcinations	PM – 250	NDIR for CO
111	0//////////////////////////////////////	CO – 1% (Max)	FTIR for CO and F
(//	Green Anode Shop	PM – 150	DOAS for all
111	Anode Bake Oven	PM – 50	
///	///////////////////////////////////////	Total Fluoride - 0.3 Kg/MT of Al	
///	Pot room	PM – 150	
111	<i></i>	Total Fluoride – 2.8 Kg/MT of Al	
11		for Soderberg Technology	
111	///////////////////////////////////////	Total Fluoride - 0.8 kg/t for Pre-baked	
///	n <i>Hard and a state of the second a</i> second as the second second second second second second second second second s	Technology	
2	Basic Drugs & Pharmaceuticals	For incinerator	Preferably Extractive PM CEMS
[]]		PM – 50	NDIR for CO
///		SO2 – 200	IR GFC, FTIR, DOAS for multi-gas
11		CO – 100	analysis
[]]		TOC – 20	FID for HC (TOC)
///	A TATATATATATATATATATATATAT ATATAT	PCDDs /F – 0.2ng TEQ/NM ³ (existing)	PCDDs, Metal not possible by CEMS
11		PCDDs /F – 0.1ng TEQ/NM ³ (New	
111		commissioned after July 2009)	
11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Metals – 1.5	
3	Chlor Alkali (Hg Cell)		
11	(H ₂ Gas stream)	Hg – 0.2	FTIR for multi-gas
[]]	(Hypo tower)	Cl ₂ – 15	
55	(HCI Plant)	HCI vapour and Mists – 35	
4	Cement (200TPD and above)	PM – 250	In-situ PM CEMS
	Plant within 5 KM radious of urban agglomeration with	PM – 100	Preferably Extractive PM CEMS
	more than 5 Lakh population		NDIR for CO
	New Cement Plants	PM – 50	IR GFC, FTIR, DOAS for multi-gas
	Cement Plants with Co-incineration	All parameters as CHWI	analysis
			FID for HC (TOC)
			PCDDs, Metal not possible by CEMS

17 Categories of Industry, their emission standards and probable options for CEMS

SN	Industries	Pollutants Emission Limits	Recommended CEMS Options		
5	Copper Smelting (Old Units)	PM – 100	In-situ PM CEMS		
111	Copper Smelting (New Units)	PM – 75			
11	SO2 recovery units upto 300 T	SO2 – 1370 (Existing)			
	SO2 recovery units above 300 T 1250 (New)		UV Fluorescence,		
$\langle \prime \prime \rangle$		Acid Mist and	FTIR, DOAS		
		Sulphur Trioxide – 90 (Existing); 70 (New)			
[]]		SO2 – 1250 (Existing); 950 (New)			
(/)		Acid Mist and Sulphur Trioxide - 70 (Existing); 50 (New)			
6	Dyes and Dye Intermediate				
11	Process	SO2 – 200	In situ PM CEMS		
11		HCI (Mist) – 35	IR GFC, FTIR, DOAS TLD, PAS for		
		NH3 – 30	multi-gas analysis		
171		Cl2 – 15	FID for TOC		
11	Captive Incinerator PM – 50		PCDDs, Metal not possible by		
111		SO2 – 200	CEMS		
///		HCI (Mist) – 50			
11		CO – 100			
	TOC – 20 PCDDs /F – 0.1ng TEQ/NM ³		1111111111111111111111111		
11			111111111111111111111111		
		Metals – 1.5			
7	Fermentation (Distillery)	Boiler Standard	In situ System for PM		
8	Fertiliser (Phosphate)	PM – 150	In situ System for PM		
11		Total Fluoride - 25			
11	Fertiliser (Urea) Old plants	PM – 150 or 2Kg/MT product	Velocity monitor		
	Fertiliser (Urea) New plants	Total Fluoride – 50 or 0.5Kg/MT product			
9	Integrated Iron & Steel		In situ System for PM		
	Sintering plant	PM – 150	NDIR for CO		
	Steel making	PM – 150 (Normal Operation); PM – 450 (Oxygen Lancing)	Velocity monitor		
	Rolling Mill	PM – 150			
	Coke Oven	PM – 50			
		CO – 3 Kg/T coke			
	Refractory Material Plant	PM – 150			

17 Categories of Industry, their emission standards and probable options for CEMS

	Industries	Pollutants Emission Limits			Recommended CEMS Options	
5	Leather Processing Tanneries	Boilers Standard			In situ PM CEMS	
1	Oil Refinery					
F	Furnace, Boiler and captive power plant	Polutants	Before 2008	After 2008		
	Gas based	SO2	50	50	BAM for PM	
		NOX	350	250	IR GFC, FTIR, DOAS TLD, PAS	
	///////////////////////////////////////	PM	10	5		
		со	150	100		
		Ni + V	5	5		
		H₂S	150	150		
	Furnace, Boiler and captive power plant	SO2	1700	850		
	Liquid Fuel based	NOX	450	350		
		PM	100	50		
\parallel		со	200	150		
		Ni + V	5	5	In situ PM CEMS	
		H ₂ S	150	150	IR GFC, FTIR, DOAS TLD, PAS for multi-gas analysis	
	FCC Regenerator		Hydro	Others	or individual technology specific to pollutants	
		SO2	500	1700		
		NOX	400	450		
		11111		350 (N)		
		PM	100	100		
				50 (N)		
	***************	со	400	400		
				300 (N)		
	***************	Ni + V	5	2 (N)		
				2	CEMS Not Applicable for Metals	
		% Opac.	30	30	Opacity	
	SRU	H ₂ S	15	10 (N)	IR GFC	
		NOX	350	250		
		со	150	100		

17 Categories of Industry, their emission standards and probable options for CEMS	17 Categories of Industr	, their emission standards and	probable options for CEMS
---	--------------------------	--------------------------------	---------------------------

SN	Industries	Pollutants I	Pollutants Emission Limits		Recommended CEMS Options
12	Pesticide	HCI – 20	HCI – 20		IR GFC, FTIR, DOAS TLD, PAS
111		CL2 – 5			
111		H2S – 5			
111	N 111111111111111111111111111111111111	P2O5 (as H	I3PO4) - 10		
111	10111111111111111111111	NH3 – 30			P2O5, PM with Pesticide and CH3CI
111	/////////////// /////////////////////	PM with Pe	sticide – 20		Are not conventional CEMS parameter
(H)		CH3CI – 20	CH3CI – 20 HBr – 5		
111		HBr – 5			
13	Pulp & Paper	PM – 250	PM – 250 H ₂ S – 10		In situ System for PM
111	///////////////////////////////////////	$H_2S - 10$			IR GFC for H2S
14	Petrochemical	Polutants	Before 2007	After 2007	In situ PM CEMS
11		SO2	1700 (Liquid)	850	IR GFC, FTIR, DOAS TLD, PAS for multi-gas analysis
111	///////////////////////////////////////	NOX	350 (Gas)	150	or individual technology specific to pollutants
111		PM	400 (Liquid)	250	
111	(** **************	со	150 (Liquid)	100	
		1111111	150	150	
15	Sugar	Boiler Stan	Boiler Standard		In situ PM CEMS
16	Thermal Power Plants				In situ PM CEMS
111	Less than 210 MW	PM – 350			
	More than 210 MW	PM – 150 lr	n situ PM CEMS		

SN	Industries	Pollutants Emission Limits	Recommended CEMS Options
17	Zinc Smelting (Old Units)	PM – 100	In situ PM CEMS
	Zinc Smelting (New Units)	PM – 75	
11	SO2 recovery units upto 300 T	SO2 – 1370 (Existing);1250 (New)	FTIR, DOAS
11	<i>/////////////////////////////////////</i>	Acid Mist and Sulphur Trioxide –	
11		90 (Existing); 70 (New)	
	SO2 recovery units above 300 T	SO2 – 1250 (Existing) ;950 (New)	
[]]	(11111111111111111111111111111111111111	Acid Mist and Sulphur Trioxide -	
())	///////////////////////////////////////	70 (Existing); 50 (New)	
(/)	Boilers (According to capacity)		
11		Particulate Matter	
//	Less than 2 T / hr	1600	
2 – 15 T/hr		1200	
(1)	Above 15 T/hr.	150	
//	ter and the second s		In situ PM CEMS
11	Steam Generation		
11	less than 2	Particulate Matter	
11	2 to less than 10	1200	
51	10 to less than 15	800	
11	15 and above	600	
	***********	150	
		All above concentrations are subject to 12	
		% CO2 correction	

Notes:

Wherever load based standards are notified Flow/Velocity Monitor is mandatory

♦O2, CO2 monitoring is essential where the standards are to be corrected for.

CO2 monitoring is a complementary part of monitoring if extractive dilution system is selected.

COMMON HAZARDOUS WASTE INCINERATOR

	A. Emission	
	Limiting concentration in mg/Nn	n ³ Sampling Duration in (minutes)
	unless stated	unless stated
Particulate Matter	50	30
HCL	50	30
SO ₂	200	30
СО	100	30
MH111111111111111111	50	24 hours
Total Organic Carbon	20	30
HF	4	30
NO_x (NO and NO_2 , expressed as	400	30
NO ₂		
Total dioxins and Furans	0.1 ngETQ/Nm ³	8 hours
Cd+Th+their Compounds	0.05	2 hours
Hg and its Compounds	0.05	2 hours
Sb+As+Pb+Co+Cr+Cu+Mn+Ni+	0.50	2 hours
V+ their Compounds		

Notes:

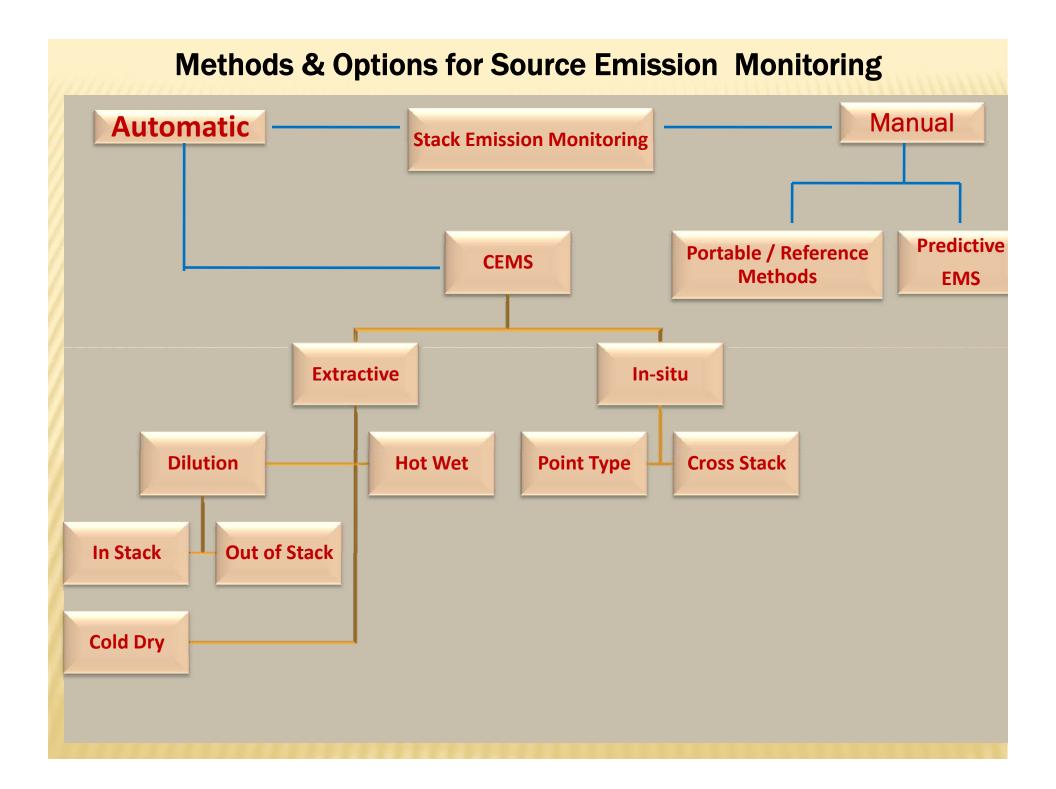
i.All monitored values shall be corrected to 11 % oxygen on dry basis.

ii. The CO_2 concentration in tail gas shall not be less than 7%.

iii. In case, halogenated organic waste is less than 1% by weight in input waste, all the facilities in twin chamber incinerators shall be designed to achieve a minimum temperature of 950°C in secondary combustion chamber and with a gas residence time in secondary combustion chamber not less than 2 (two) seconds.

iv. In case halogenated organic waste is more than 1% by weight in input waste, waste shall be incinerated only in twin chamber incinerators and all the facilities shall be designed to achieve a minimum temperature of 1100°C in secondary combustion chamber with a gas residence time in secondary combustion chamber not less than 2 (two seconds).

v.Incineration plants shall be operated (combustion chambers) with such temperature, retention time and turbulence, as to achieve Total Organic Carbon (TOC) content in the slag and bottom ashes less than 3%, or their loss on ignition is less than 5% of the dry weight].


REVISED EMISSION PARAMETERS

PM, **NOX**, **SO**₂, **CO**, **HCI**. CI_2 , **NH**₃ and **F**

ISSUES WITH CEMS IMPLEMENTATION

Technology Selection

- ✓ Suitability / Fitness to specific emission
- ✓ Quality Certification (COP)
- Installation
- Calibration
- Field Performance testing
- Data Acquisition
- Data Handling System
- Data Robustness
- Data Exceedance / Violation
- Compliance

Location of Installation for CEMS

Firstly The location satisfies the minimum siting criteria of Emission Regulation Part III (i.e., the location is greater than or equal to eight stack duct diameters downstream and two diameters upstream from a flow disturbance

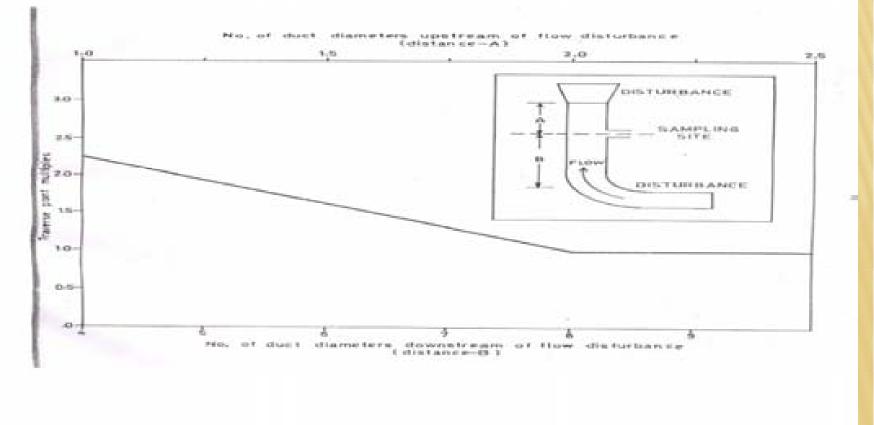
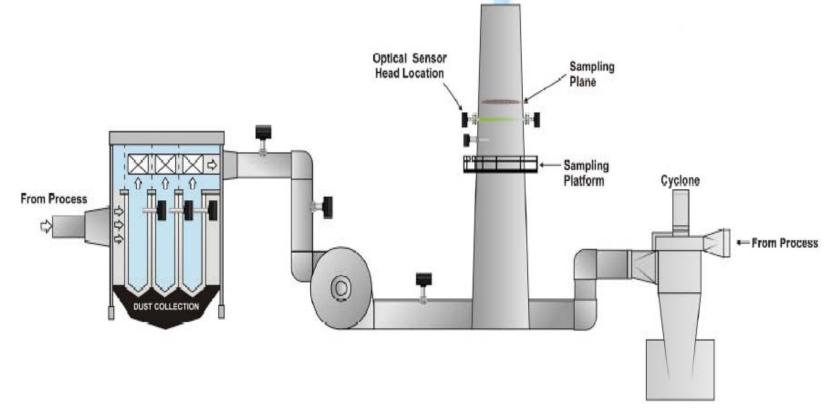
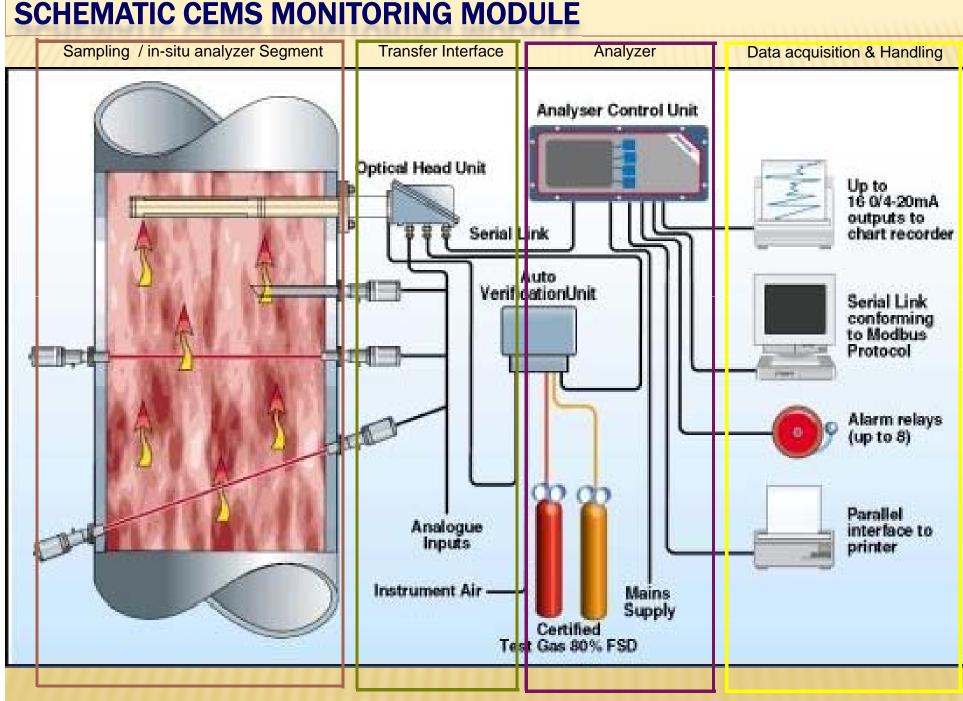



FIGURE 1.3 Travers point multiples to determine minimum number of traverse points requirement when a < 2 dia or b < 8 dia


Secondly It should be at the plane 500 mm above the Isokinetic testing Port, so, that the reference monitoring methods are not disturbed

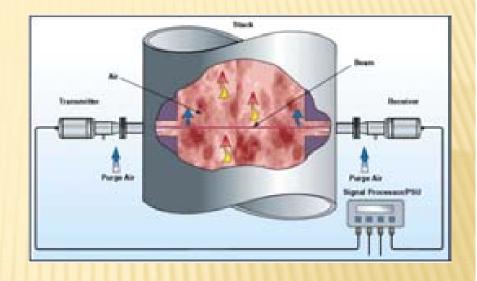
Positions to be considered for installation of Particulate Monitors

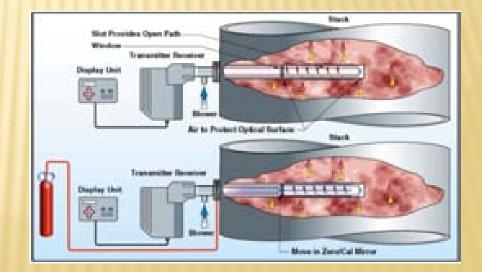
The installation should have logistic support like easy approach for calibration, maintenance etc.

SCHEMATIC CEMS MONITORING MODULE

Available Technologies for Non Extractive CEMS for gas and PM

I. In-situ Cross Duct/Stack

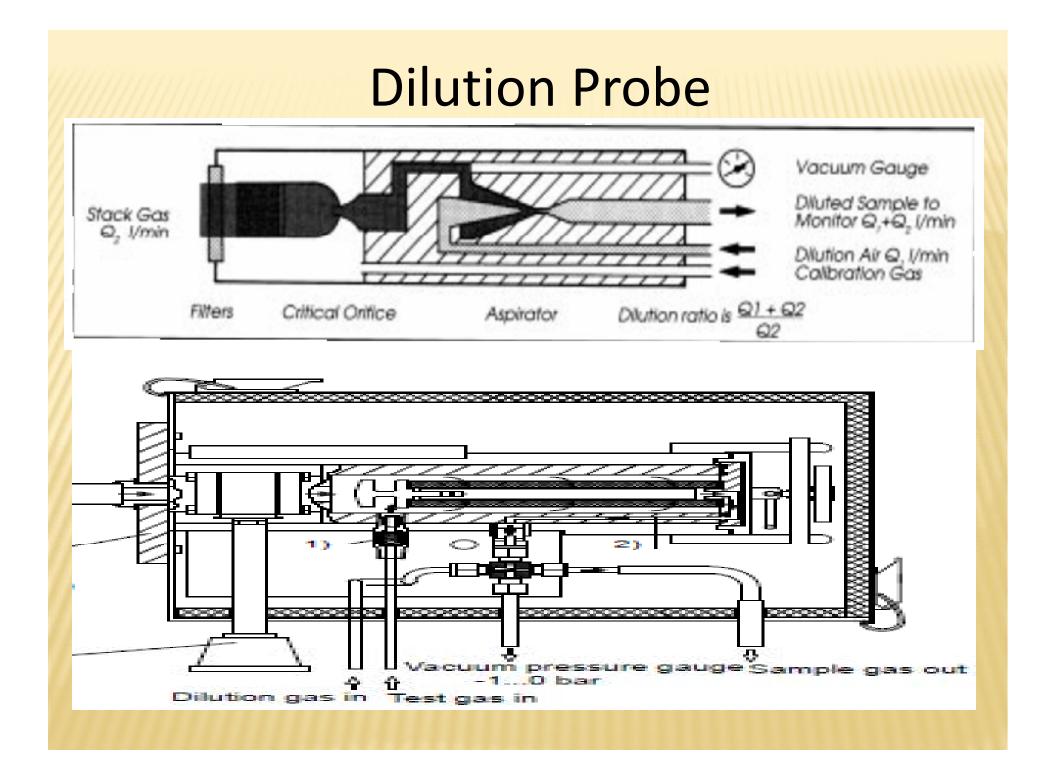

Gas is being measured passing by a specific 'line of sight' of the monitor, typically ranging from a few feet, to the full distance across the interior diameter of the stack/ duct

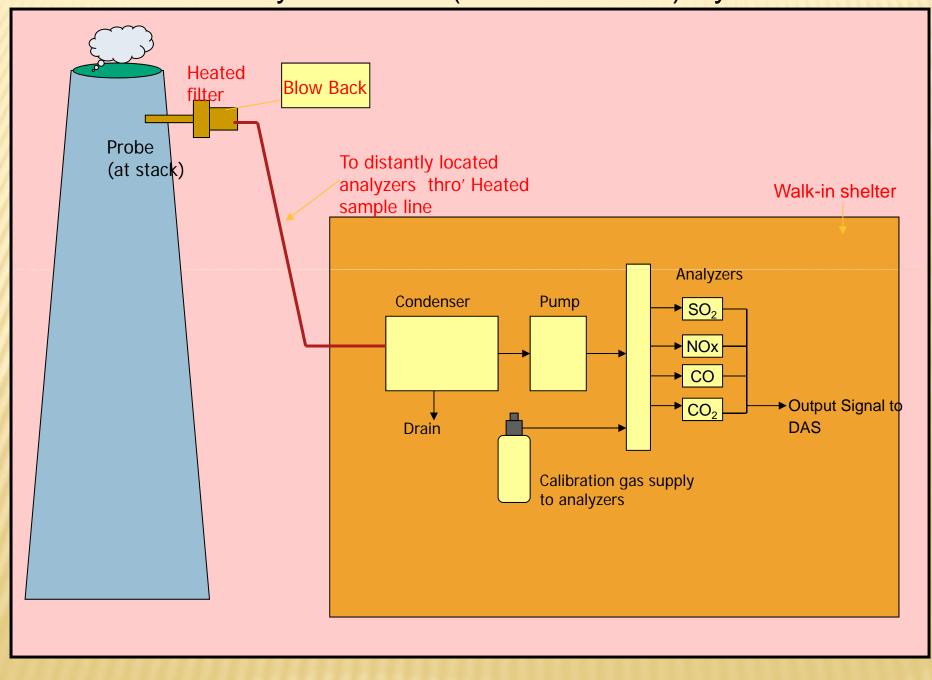

e.g. Opacity, DOAS, FTIR, Optical Scintllation, Light Scattering etc.

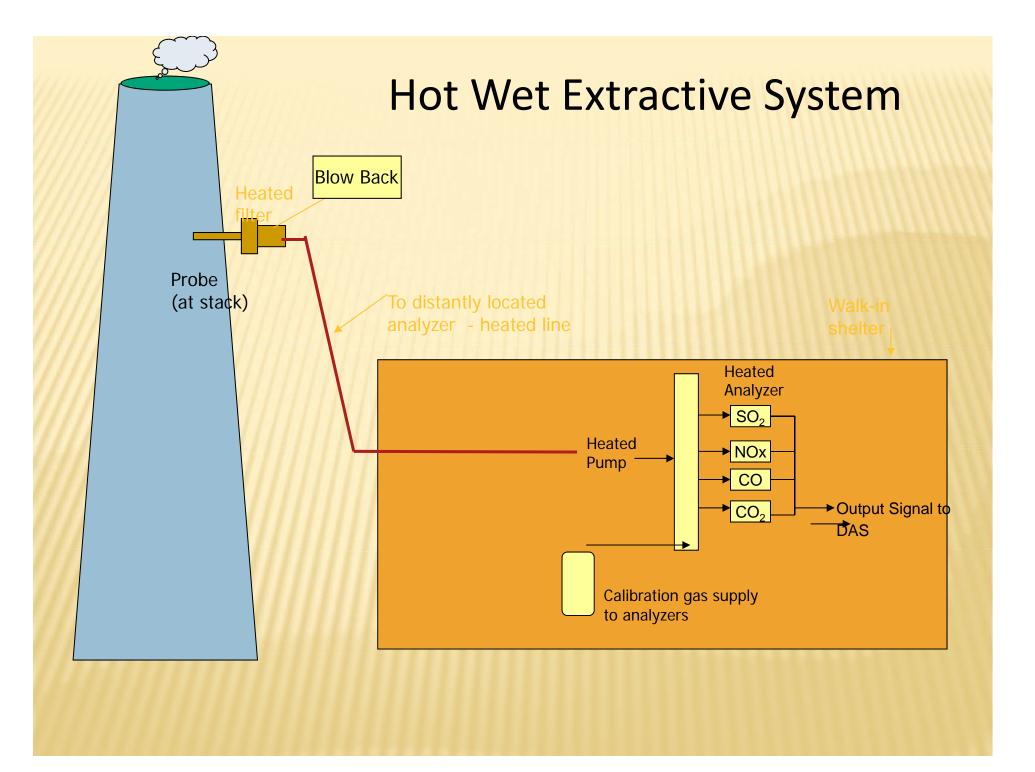
II. In-situ Probe Type

Gas is being measured at one specific point or along a short path in the stack or duct

e.g, Probe Electrification (DC and AC triboelectric)




Extractive CEMS


Dilution Extractive System

Cold Dry Extractive (without dilution) System

Challenges for Extractive CEMS

- PM Sample has to be drawn from Stack isokinetically
- Distance from source and analyzer
- Positive Bias of Secondary PM

Advantages of Extractive CEMS

- Wet Stack emission can be monitored
- Measurement Ranges of analyzer may be maximized
- Size fractionation is possible
- Maintenance is less compared to in-situ system

PM CEMS TECHNOLOGY SELECTION – STACK CHARACTERISTICS MATRIX

Parameter	DC Tribo AC Tribo	AC Tribo	Light Scatter	Opacity	Light	Extractive	
				Scintillation	Light Scatter	BAM	
Units of Measured Value	g/s, kg/hr	mg/m3, g/s, kg/hr	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3
Velocity Monitor Required	X	✓	√	~	✓	√	✓
Duct < 1m Diameter	✓	~	✓	X	X	√*	√*
Duct >1m to 4m Diameter	~	✓	✓	~	✓	√*	√*
Duct > 4m Diameter	X	X	X	~	~	√*	√*
Electrostatic Precipitator	X	√ ***	✓	~	✓	~	~
Stack Gas Temperature > 500°C	X	√***	✓	✓	~	✓	✓
Wet Scrubber or Water Droplet <70°C	X	√ ***	X	X	X	√	×
Large particles > 20um	✓	~	Х	√	✓	X	~
Dust> 100 mg/m3	✓	✓	✓****	✓	✓	X	✓
Varying gas velocity	~	√***	×	~	✓	√**	✓

Summary of CEMS Technology Options

Technique	Туре	Gases Measured	Comments
Chemiluminescence	Extractive	NO, NO _X , NO ₂ *	*NO ₂ calculated (NO _X – NO)
UV Fluorescence	Extractive	SO ₂ (H ₂ S, TRS)	Gases in brackets can also be measured but not simultaneously
IR Gas Filter Correlation (GFC)	Extractive	CO, CO ₂ , NO _X , SO ₂ , N ₂ O	Multiple gases can be monitored, generally no more than 2-5.
Fourier Transform Infra-red (FTIR)	Extractive / Path	CO, CO ₂ , SO ₂ , NO _X , HCI, HF etc.	Multiple gases can be monitored, typically 5+
Differential optical absorption spectroscopy (DOAS)	Path	CO, CO ₂ , SO ₂ , HCI, HF, NO, NO ₂ , NH ₃ , VOCs, H ₂ O	Multiple gases can be monitored, typically 5+ NO ₂ measured directly. Additional gases can be added at relatively low cost.
Flame Ionization Detector (FID)	Extractive	Total HC	Requires hydrogen carrier gas.
Tunable Laser Diode (TLD)	Path	HCI, HF, NH ₃ , CH ₄ , CO, CO ₂ , H ₂ O	Cost effective for single component applications.
Zirconia oxide cell	In-situ	O ₂	Widely used, maximum temperature generally 500°C
Paramagnetic	Extractive	O ₂	
Photo acoustic spectroscopy (PAS)	Extractive	CO, CO ₂ , SO ₂ , HCI, HF, NO, NO ₂ , NH ₃ , VOCs, H ₂ O	Can measure virtually any gas that absorbs IR. Detailed analysis of other compounds that may be present other than target gases required.
Transmissometry (Laser Optical Backscatter)	In-situ	Opacity (smoke), & Total PM (dust)	2400Hz intensity controlled LED & Solid State Diode Laser

FEW MANDATORY ADDITIONAL REQUIREMENTS

Flow Monitor / Velocity Monitor

Stack Temperature Monitor

Moisture Monitoring Device

 $O_2/CO_2/CO$ monitoring as per regulatory requirement

For Extractive Dilution System CO₂ monitor at both source and Analyzer end

Extractive dilution system should have Cal gas injection facility at sampling point to Calibrate the system not only analyzer

International Code of Certification for CEMS

European Union	USA
QAL 1 (EN)	MACT
(Quality assurance level 1) QAL 2 & QAL 3 (EN) Performance Standard	(Maximum Achievable Control Technology); this is an objective oriented quality certification applicable to US only
TUV (Germany) (Technical watch-over Association) – a Product standard	EPA Technology approval system
MCERTS (UK) (Monitoring Certification Schemes) – a Product standard	PS-1 to PS 11 (USEPA) It is a performance Standard

REQUIRED MONITORING RANGES

HIGHEST RANGE OF MEASUREMENT RESPECTIVE ANALYSER'S SHALL NOT BE LESS THAN 2.0 TIMES OF NOTIFIED STANDARD IN ANY CASE FOR THE PARAMETERS HAVING CONTROL SYSTEM (APCD for respective parameter); HOWEVER, FOR THE PARAMETERS WITHOUT CONTROL DEVICE THE MAXIMUM RANGE SHOULD NOT BE LESS THAN 3.0 TIMES

LEVEL (I) PERFORMANCE EVALUATION PROCESS

CRITERIA OF INSPECTION AND PERMISSION ON SAMPLING LOCATION FOR ALL SENSORS / SAMPLING DEVICE

VERIFICATION OF FACTORY CALIBRATION CERTIFICATES

DEMONSTRATION AND VERIFICATION OF MANUFACTURERS CLAIM BEFORE INSTALLATION

INSTALLATION (INCLUDING CALIBRATION) AND STABILIZATION OF ALL THE ANALYSER ON DIFFERENT LOAD CONDITION.

PRIMARY DATA COLLECTION AT 100% LOAD FOR 4 WEEKS

LEVEL (II) PERFORMANCE EVALUATION PROCESS

EVALUATION OF DATA DEPENDING ON CRITERIA SET FOR RANGE SELECTION, ZERO SPAN DRIFT, CALIBRATION, LINEARITY

IF IT MEETS THE CRITERIA SET THE OPERATOR IS ALLOWED TO RUN IT FOR NEXT TWO MONTHS AND MAY BE ASKED TO PROVE ACCURACY AND PRECISION BY REPEATABILITY AND REPRODUCIBILITY TESTS AGAINST REFERENCE METHODS

IN CASE OF FAILING TO MEET LEVEL (I) THE OPERATOR / VENDOR IS RESPONSIBLE TO REPEAT THE WHOLE PROCESS / A PART TO COMPLY WITH CRITERIA ON COMPLIANCE TO THE LEVEL (I) & (II) PERFORMANCE EVALUATION PROCESS THE ACCEPTANCE OF THE SPECIFIC SYSTEM INSTALLED IN RESPECTIVE PLANT MAY BE ISSUED BY REGULATOR

REGULAR PERFORMANCE EVALUATION PROCESS

- Instrument health checking: fixed time (10.00 a.m.) using standard methods and standard reference materials.
- The health of the instruments/analysers shall be assessed on daily basis at fixed time (10.00 a.m.) by checking the zero drift.
- calibration verification shall be done on quarterly basis by empanelled laboratories.
- The instruments/analysers shall be rechecked for zero and span drift every Friday at In case the daily zero drift is more than the acceptable limit as specified in the catalogue/brochure of the instrument/analyser manufacturer and persists continuously for five days, the instrument / analyser shall be recalibrated following procedure laid down at point (ii) above.
- In case the weekly span drift is more than the acceptable limit as specified in the catalogue brochure of the instrument/analyser manufacturer and persists continuously in the succeeding week the instrument/analyser shall be recalibrated following procedure laid down in point (ii) above. (xiii) Data capture rate of more than 85% shall be ensured.the comparison/ verification of data/ calibration shall be done by CPCB empanelled laboratory once in 6 months.

CRITERIA FOR PERFORMANCE EVALUATION

The percentage availability for the system and each analyzer shall be calculated monthly either by the data acquisition system or manually, using the following equation: Ta

% Availability (System or Analyzer) = ----- X 100

Ta = the time in hours during which the system or analyzer was generating quality assured data during the time the source operated during the month.

T = the total time in hours the source operated during the month and is defined as those hours during which the fuel is burned* * for combustion sources, the operational time also includes any time period(s) attributable to "cool down" or "purge" modes Time periods necessary for CEMS calibration, quality control checks or back purging shall not be considered as downtime when calculating Ta.

PROPOSED CRITERIA – 85 %

CRITERIA FOR PERFORMANCE EVALUATION

Performance Specifications	Sulphur Dioxide Systems	Oxides of Nitrogen Systems	Carbon Monoxide Systems
Analyzer linearity	≤ ± 2% of span from cal. curve	<u>≤ +</u> 2% of span from cal. curve	<u>≤ +</u> 2% of span from cal. curve
Relative accuracy ^a	<u>≤ ±</u> 10% of RM	<u>≤ ±</u> 10% of RM	<u>≤ ±</u> 10% of RM
Zero drift - 24 hr	≤ ± 2% of span	<u>≤ ±</u> 2% of span	<u>≤ +</u> 2% of span
Span drift - 24 hr	≤ ± 4% of span	≤ + 4% of span	<u>≤ +</u> 4% of span

Performance Specifications	Oxygen Monitors	Carbon Dioxide Monitors
Relative accuracy	<u>≤ +</u> 10% of RM or within 1% of O ₂ (whichever is greater)	<u>≤ +</u> 10% of RM or within 1% CO₂ (whichever is greater)
Analyzer linearity	<u>≤ +</u> 0.5% O ₂	<u>≤ +</u> 0.5% CO ₂
Zero drift - 24 hr	<u>≤ +</u> 0.5% O₂	<u>≤ +</u> 0.5% CO₂
Span drift - 24 hr	<u>≤ +</u> 0.5% O₂	<u>≤ +</u> 0.5% CO₂

Performance Specifications	In-Stack Opacity Monitors
Zero drift - 24 hr	<u>< +</u> 2% In-Stack Opacity
Span drift - 24 hr	<u>< +</u> 2% In-Stack Opacity

CRITERIA FOR PERFORMANCE EVALUATION

Performance Specifications	Volumetric Flow/Velocity Monitors
System Relative Accuracy for velocity ≥ 3 m/sec	<u>< +</u> 15% of Reference Method
System Relative Accuracy for velocity < 3 m/sec	within 0.5 m/sec of Reference Method
Orientation Sensitivity	<u>< +</u> 4% of span
Zero drift - 24 hr	<u>< +</u> 3% of span
Span drift - 24 hr	<u>< +</u> 3% of span

Performance Specification	Temperature Sensors	
System Accuracy	<u>+</u> 10°C of the reference method	

ALGORITHM FOR PERFORMANCE EVALUATION

(d) Calculations - Determine the calibration drift, at each concentration, once each day (at 24hour intervals) for 7 consecutive days according to the following calculation:

Calibration Drift (%) =
$$\frac{(R - A)}{FS} \times 100$$

where:

- R = the true value of the reference standard (ppm or % for gas analyzers, kPa for pressure transducers, °C for temperature transducers, m³/d or tonnes/d for flow elements).
- A = the CEM component value (in same units as R).
- FS = the full scale reading of the CEM system component (in the same units as R).

(e) Calculations and Acceptable Results - Determine the linearity, at each concentration, according to the following calculation:

- R = the true value of the test gas (% or ppm).
- A = the average of the three system response to the low-, mid-, or high-range calibration gas, (% or ppm).
- FS = the full scale value of the monitoring system (% or ppm).

THESE ARE ALL EXAMPLES OF CRITERIA FOLLOWED WORLDWIDE

HERE THE PROCESS ARE DESCRIBED ONLY

THE ACCEPTANCE CRITERIA MAY BE SET BY COMMITTEE FOR INDIA

Exceedance in Emission

- Any exceedance of values over the prescribed standards or norms shall be considered as violation.
- Instantaneous elevated data i.e. spikes with duration less than one minute shall be dealt separately and not considered for data averaging.
- Continuous exceedance of values upto 10% over the standards/norms for more than half an hour, shall require preventive action from the industry.
- Frequent exceedance of the values i.e. more than 5% of the total data capture in a day of the prescribed standards/norms shall invite action from SPCBs/PCCs
- ✓ Any exceedance of the monitored values as against the standards shall invite SMS & email to the industry from SPCBs/PCCs requiring immediate feedback on the corrective action initiated/taken.
- In case the emission exceeds continuously the prescribed norms by 10% over the standards and for a duration of one hour or more, the industry shall inform the SPCBs/PCCs of the action initiated to control the emission

Exceedance in Emission

- In case the industry fails to control the emissions/discharges within the norms it shall move towards closure of its operation following the laid down standard operating practices.
- For any second failure of the industry to keep the emissions within 10% of the norms for period exceeding one hour the industry shall immediately move towards closure of its operation under intimation to SPCBs/PCCs. (viii) The values recorded during calibration or during preventive maintenance shall not be considered for exceedance and assessing the data capture rate. (ix) Plant start-up or batch process starting emissions shall not be considered for averaging for the initial, 30 minutes period in case of batch processes or small furnaces/ boilers not operating continuously.
- Plant shut down period shall be excluded while calculating data capture rate.

Abhijit Pathak Dr. D. Saha apathak.cpcb@nic.in dsaha.cpcb@nic.in 43102348, 9971566700

THANK YOU

केन्द्रीय प्रदूषण नियंत्रण CPC & CENTRAL POLLUTION CONTENT