Changing paradigm for sewage - from treatment to recycle

- Professor, Department of Civil Engineering,
- Malaviya National Institute of Technology, Jaipur

Some issues discussed in the morning

- Sewage- drinking water supply relationship (quantitative mass balance versus quality implications)
- Create market for the treated sewage?
 Agriculture versus industry
- Modular development of STPs (what happens due to overdesign? Bangkok, Bosch, JK Tyres Kankroli...)
- Design, trouble shooting and augmentation modules

Some issues discussed in the morning

- Minimizing the discharge (Aurobindo and Gargi hostels of MNIT Jaipur)
- Decentralized versus centralized systems
- Energy aspects in STPs how much to conserve?
- Wetlands their applications and limitations
- New areas for R&D

Deep shaft process

- •It is a Process having a mechanism of great depth aeration (depth of 40 to 150 m as an aeration tank) and it is practiced where land is in short supply.
- It can treat the waste water at higher rate.
- •It is also known as a space efficient and energy efficient biological process.

Disposal and recycle norms...

Parameter	Disposal	Recycle norms		
	norms	Low end reuse	High end reuse	
TSS	100	< 5	< 1 ntu	
BOD	100	< 10	Nil	
COD	250	< 50	Nil	
SDI	No limit	No limit	< 3	
TKN	100	No limit	< 1	
T- N	No limit	No limit	< 5	
T- P	5	No limit	< 1	
Bacteria	No limit	No limit	Nil	

...Cost Benefit Analysis

1. Benefit vs Additional cost

2. Payback of Additional cost

3. Life cycle analysis

RBC at MNIT

SBR

SBR Basin Equipment

MBR

it is a very high efficiency process with outlet quality as feed to Reverse Osmosis

MBR System Schematics

Outlet quality (all units in ppm)

Srno	Paramete r	SBR	MBR	ASP
1.	BOD	10	5	30
2.	COD	50	25	250 – 300
3.	TSS	10	< 0.5	100
4.	TN	<5	<5	No change
5.	TP	<1	<1	No change
5.	SDI	-	<3	_

Energy considerations

- ASP STP Jaipur North- 27 MLD- 0.89 kWh/ kg of BOD (ref_ MNIT)
- ASP STP Jaipur South- 62.5 MLD- 0.50 kWh/ kg of BOD (ref_ MNIT)
- ASP Pune 17 MLD ASP- 1.75, TF- 0.70 kWh/ kg of BOD (ref_MNIT)

Ref-Compendium..IIT Kanpur prepared for NRCD- MOEF 2009

- Conventional ASP based STPs under YAP- Allahabd 60-80 MLD- 180-225 KWH/MLD
- TF under YAP- 180 KWH/MLD
- UASB under YAP- 10-15 KWH/MLD
- Facultative aerated lagoon under YAP 18 KWH/MLD

How to save and how much??

How much energy can be generated?

Decentralized Treatment Systems WHERE to consider (according to USEPA)?

- Where the operation and management of existing onsite systems must be improved
- Where the community or facility is remote from existing sewers
- Where localized water reuse opportunities are available
- Where fresh water for domestic supply is in short supply
- Where existing wastewater treatment plant capacity is limited and financing is not easily available for expansion
- Where, for environmental reasons, the quantity of effluent discharged to the environment must be limited
- Where the expansion of the existing wastewater conveyance from treatment facilities would involve unnecessary disruption to the community
- Where specific wastewater constituents are of environmental concern.

The case study of Jaipur

- Two scenarios considered
 - First, centralized treatment at STP Delawas and supply treated sewage through a pipeline to the major green belts- data derived mainly from PHED report
 - Second, isolated RBCs for the desired capacities to be constructed at individual locations with and without automation
- Estimates made for a period of 10 years

Economic Justification of Decentralized System

Table-1: Demand Estimates and No. of Proposed Plants

S.No.	AREA	Tentative	No. of Plants		
		Demand in MLD	1 MLD	0.5 MLD	
Zone I					
1	Ram Niwas Bagh	1.2	1	1	
2	Central Park	1	3		
3	Polo Ground1.0/ Golf Course	0.45	Central Park plant may Cater		
4	SMS Stadium	0.6			
5	Jawahar Nagar	1.56	1	1	
6	Jawahar Nagar Forest Area	5	5		
7	Amrita Devi Udyan	3	3		
8	University Campus	1	1		
9	Saras Sankul	0.3		1	
10	MNIT	0.7	1	1	
11	OTS	0.3	1		
12	Smrity Van	0.3	OTS Plant	may cater	
13	Malviya Nagar sector 1	0.7	2		
14	Malviya Nagar Ind. Area	0.95			
15	Malviya Nagar sector 9	0.7			
16	Jawahar Circle	0.55			
17	Jagatpura	5	5		
18	Pratap Nagar	3.85	4		
	SUBTOTAL	27.16	26	4	

Table-1: Demand Estimates and No. of Proposed Plants						
S.No.	AREA	Tentative	No. of Plants			
		Demand in MLD	1 MLD	0.5 MLD		
Zone II						
1	Inter State Bus Terminus	0.25		1		
2	Mansarovar (Sec 1 to 6)	1	1			
3	Mansarover Sector SFS &Sec 7-12	1.2	1	1		
4	Mansarover Industrial Area	1.2	1	1		
	SUBTOTAL	3.65	3	3		
Zone III						
1	Sitapura Ind. Area	2	2			
2	Tonk Road	8	8			
	SUBTOTAL	10	10	0		
Zone IV						
1	Sez	22.5	23			
2	Bagru Industrial Area	5	5			
3	Ajmer Road Colonioes	5	5			
	SUBTOTAL	32.5	33	0		
	Total No. of Plants		72	7		
	Total Capacity	73.3	72	3.5		

Unit Costs for various options						
	Plant Size	Capital Cost	Power Cost for 10 Yrs	10 Yrs O & M Cost	No. of Proposed Units	
Treatment System without	1 MLD	7,875,000	3,966,564	3,212,394	72	
Tertiary Treatment	0.5 MLD	6,900,000	1,983,282	3,121,833	7	
Treatment System with Tertiary Treatment	1 MLD	8,400,000	5,949,846	3,212,394	72	
	0.5 MLD	7,485,000	2,974,923	3,121,833	7	
Treatment System with	1 MLD	8,925,000	5,949,846	586,130	72	
Fully Automatic Plant	0.5 MLD	8,070,000	2,974,923	495,569	7	

1	No. of Proposed	Capital Cost			
	Units	Capital Cost	Power Cost for 10 Yrs	10 Yrs O & M Cost	Total
Without Tertiary Treatment	72	567,000,000	285,592,622	231,292,350	1,083,884,972
	7	48,300,000	13,882,975	21,852,830	84,035,805
		615,300,000	299,475,596	253,145,181	1,167,920,777
With Tertiary Treatment	72	604,800,000	428,388,933	231,292,350	1,264,481,283
	7	52,395,000	20,824,462	21,852,830	95,072,292
		657,195,000	449,213,395	253,145,181	1,359,553,575
Fully Automatic Plant	72	642,600,000	428,388,933	42,201,345	1,113,190,278
	7	56,490,000	20,824,462	3,468,983	80,783,445
		699,090,000	449,213,395	45,670,328	1,193,973,722
Centralized System		1,050,000,000	989,600,000	236,400,000	2,276,000,000

Advantages

- Cost of additional Sewerage system, Transport of sewage and its pumping reduced
- In the earlier scenario contamination due to dye wastes made it difficult to treat sewage
- High end technology introduced at lesser cost and possibility for modular development
- Recharging the local water table
- Disposal on greens gives further polish thus safe for GW recharge (Natural treatment system introduced)

Technologies for the Treatment of Wastewater an analysis...

- DEach situation is different and needs to be given dual consideration, different alternatives exist for each system from small scale households to large scale centralized one.
- ☐ More attention to properly designed lower-cost, simpler to operate processes as well as to decentralized technologies. These should be adopted depending on the influent wastewater and on the desired effluent quality.
- □Also, whenever feasible, a reuse component should be included for all new wastewater treatment projects

Biological Nitrogen removal

Advances in Biological N- removal

- Application of Thiosphaera pantotropha, a heterotrophic nitrifier and aerobic denitrifier, in mixed bacterial cultures for simultaneous carbon removal, nitrification and denitrification
- Two important points to note about TP
- i) The specific nitrifying activity of TP is $10 10^3$ times lower than that of autotrophs much higher compared to those of other het nitrifiers ($10^3 10^4$ times lower).
- Growth of TP as heterotroph is much higher than that for the autotrophs (the μ_{max} for *Nitrosomonas* europea 0.03 - 0.05 h⁻¹, that of *TP* approx 0.4 h⁻¹)
- The aerobic denitrification rates were much higher than het nitrification rates of TP- extra capacity to take nitrate or nitrite coming from other routes

LAYOUT OF BRAHMPURI WETLAND

Inferences on wetland study

- Unvegetated wetland is performing better than the vegetated ones for organics removal (??)
- Only N- removal was better in vegetated wetlands suggesting that removal of nitrogen is mostly by plant uptake.
- Plant litter is contributing back to phosphorous in vegetated wetlands giving unexpectedly higher phosphorous at outlet.
- Though the wetland systems were highly under-designed as per design equations they performed satisfactorily -need our own design equations.
- Harvesting being easier compared to ponds..have future

Conclusion

- The selected strategy needs to be developed through careful planning and detailing and may be public consultation.
- The decentralized option has a definite edge over the centralized option economically, and the flexibility of modular development can always allow stage wise development and obtaining feedback to refine the system.
- The future is for the advanced technologies and the life cycle analysis of the treatment options

