Mini-grids in Uttar Pradesh

Policy Lessons

Mandvi Singh mandvi.singh@cseindia.org

- Understated deficits: Sharp decline in energy deficits to 1.5% from 15.6% does not reflects actual demand
 - Fundamental reason for 'actual deficits' is poor financial health of discoms – an intractable problem.
- Paradox of 100% village electrification: All villages in UP are electrified but bar for electrification very low
 - Only 53 villages of the 18,452 electrified under DDUGJY have 100% electrification
- Gap in household electrification: Only 63% households connected to the electricity grid; 57% in rural areas
 - Electrification less than 30% in Lalitpur, Jalaun, Sonbhadra and Jhansi districts

The SAUBHAGYA Challenge

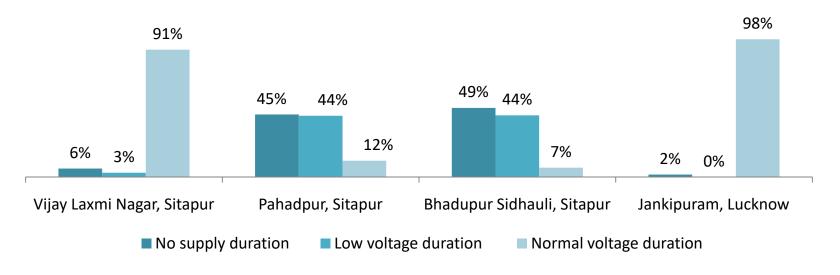
- Requires connecting over 16 lakh rural HHs to grid every month
- At current pace (15 lakh connections in 7 months), universal electricity access in UP could take 7 years
- Rs 4,000 per HH budget insufficient: average cost of developing rural distribution networks is around Rs 2 lakh per km; cost for wiring each HH could vary from Rs 5,000 to Rs 10,000
- Increased subsidy burden: Supplying power to 1.29 crore additional rural HHs would increase annual subsidy requirement of discoms by Rs 2,000–3,400 crore ~ 40% increase

- **Inadequate rural supply:** Government claims 18 to 18:30 hours of supply (*Power to All, UPSLDC, CEA*), but on-ground reports indicate differently.
 - While power supply have improved in several parts, it continues to vary from 10–16 hours per day in rural areas.
 - In CSE surveyed 6 villages, rural supply restricted to 10-14 hours.
 - Unlikely that UP government/discoms will be able to supply 24x7 electricity to rural HHs in the near future.

Electricity supply scenario in CSE-surveyed villages

Location	Total HHs	Electrification	Hours of supply
Sanda, Sitapur	737	70.4%	15–16
Kamplapur, Sitapur	132	95.5%	12–16
Katkutiyan, Kushinagar	819	42.4%	15–16
Tamakuhi Raj, Kushinagar	881	66.7%	10–14
Para Village, Unnao	1,212	24.0%	12–16
Dhankal Khera, Unnao	101	80.2%	10–12

Source: CSE Survey


- Missing peak supply: Rural supply often not available in peak hours, when most needed.
 - UPSLDC's supply schedule for CSE-surveyed villages indicates 2 to 4 hours gap in morning/evening peak periods.
 - Actual power supply data also points to major gaps Example data from 10 villages of Sitapur

Power availability in 10 villages in Sitapur district in April 2018 during evening peak

- **Prioritized urban supply:** Clearly evident disparity between rural and urban centers
 - Example: Actual power supply data for Sitapur district
 - Rural supply associated with higher network losses (double than urban areas)
 - Main reason commercial: low tariffs; low metering, billing and collection rates;
 higher theft. These issues may get addressed under SAUBHAGYA and UDAY, but remain unresolved as of now.

Power supply position to domestic consumers in Uttar Pradesh during April 2018

Note: Data for 720 hours; Source: watchyourpower.org

Mini-grids in UP

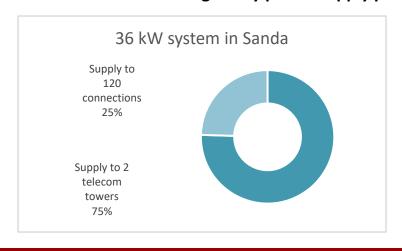
- 1,850 mini-grids aggregating 3 MW capacity operational; target is to increase this to 10 MW under *Power for All*
- Dominated by private players backed by public and private capital subsidies (Limited government presence: 16 UPNEDA systems set up as demonstration projects)
- Varied operational models adopted based on company objectives and local requirements/conditions.

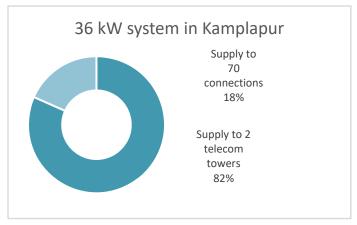
System size and connection load:

- Over 90% systems very small in capacity (less than 1 kWp); Distribution networks flimsy and can handle only limited loads
- All CSE-surveyed systems had load inhibitors installed to provide 20–60 W HH connections
- Large UPNEDA systems serve 150 W load per HH, against 500 W given by discoms.

Mini-grids in UP

- Low service standards: Systems are set up to supply electricity for limited hours (4-6 in a day); Husk Power only one aiming 24-hour supply, which is not being achieved due to low demand.
- **High tariffs:** Several times higher than grid supplied power; wide-variations across systems and consumer categories; Range from Rs 20–Rs 150 per unit not transparent as customers are charged on load.
- Reasons cited for high tariffs: Short payback period; High fixed cost for a small systems; Benchmarked on expenditure on kerosene for lighting ~ proxy for willingness/ability to pay


Tariffs of mini-grids operating in Uttar Pradesh


Company	Costs of connection	Effective tariff (Rs per unit)	Hours of usage	
OMC Power	15 W – Rs 110	40.7	6	
Husk Power	34 W – Rs 230	37.6	6	
	50 W – Rs 300	33.3		
	100 W – Rs 630	35.0		
Boond Engineering	20 W – Rs 60	16.7	6	
	60 W – Rs 350	32.4		
MeraGao Power	20 W – Rs 120	28.6	7	

Subsidies supporting telecom towers?

- Number of mini-grids rely on telecom towers for anchor load provide consistent & stable 24/7 demand, and steady cash flow.
- Issue: Effectively diverts subsidies and low-cost funds to help telecom companies reduce expense on diesel for running towers.
- Does little to address energy access issues often only a 1/5th of power supplied to HHs
- Anchor load model should serve local commercial load will establish commercial viability and increase local incomes.

Average daily power supply pattern of two mini-grids in Sitapur

UP Mini-grid Policy, 2016

Objective: To address the issues of high tariffs and low supply hours; To put in place an investment climate that stimulates private participation.

Key features:

- 30% state subsidy to projects in addition to centre's 30% subsidy, based on viability gap funding, to be determined by reverse bidding.
- Projects which do not avail state subsidy remain outside the purview of policy.
- Service standards for projects receiving state subsidies:
 - Daily minimum 8 hours of supply for residential consumers (3 hours in morning and 5 hours in evening) and 6 hours for production and commercial needs. Surplus to be supplied to other consumers.
 - HH tariff of Rs 60/month for 50 W load and Rs 120/month for 100 W load. For over 100 W load, mutually decided tariff by consumers and developers.
- Two exit options for developers:
 - Power generated by mini-grid can be sold to discom at a tariff decided mutually by developer, discom and UPERC.
 - Project may be transferred to discom at a price decided mutually between developer and discom.

Policy: Missing Points

- Unviable tariff rates: Subsidy insufficient for Rs 6–7 per unit HH tariffs
 - Other segment demand (small commercial/industrial) insufficient to compensate for low HH tariffs
 - Low demand profile of HH consumers (often 10 units)
 - With 30% MNRE subsidy HH tariff is Rs 16–40 per unit despite higher rates for commercial loads
- Commercial uncertainties associated exit options:
 - Tariffs to be determined at the time of exit/grid-integration. No clarity on calculation methodology. May be based on costs of solar/biomass projects in the area or discom's average cost of power purchase – neither will be adequate
 - Parameters for determining sale price of mini-grids assets are not defined.
 Discom may not be interested in buying distribution assets and may offer only a fraction of generating asset's value
 - Requires distribution networks to meet grid standards and codes implying significant increase in investments
- Result: Not a single project has come up under the policy

Integrating Mini-grids

- All mini-grid systems running parallel to the grid
- Improving grid-based supply a major threat to business
- Interaction between discom grid and mini-grids can make business sustainable; improve affordability of power supply; avoid duplication of effort and investment in developing parallel networks.
- Possible business models:
 - Tail-end generation for grid or open access consumer
 - Distribution franchisee with a generation asset
 - Grid integration with net-metering
 - Back-up power supplier
 - Etc.
- Key requirement: Addressing policy, regulatory and market concerns.

Integrating Mini-grids

- Missing policy/regulatory guidance:
 - Draft amendments to National Tariff Policy, 2016: Develop regulatory framework for compulsory purchase of power from mini-grids.
 - UP state policy provides two exit options but no certainty over commercial terms of agreement.
 - UP mini-grid regulation requires distribution network of large mini-grids (over 50 kWp) to meet stringent technical and safety standards; but implementation mechanism weak

Critical issues:

- Clearly define terms of commercial agreement upfront for all possible transactions with discoms.
- Financial support for distribution network development
 - CSE estimates that developing mini-grid distribution infrastructure covering 5% of rural HHs in UP will be Rs 1,460 crores

Policy learnings

- Set targets and monitor growth
- Bring mini-grids under the regulatory purview:
 - Design mini-grids for minimum 8-12 hours of supply for households including mandated supply during peak hours
 - At least half of the total power generated should be supplied to households
 - Define grid codes and safety standards for mini-grid distribution network in line with the discom grid
- Charge mini-grid's households same tariff as discom's households.
 - Difference between LCOE and mandated tariff should be coved through government subsidy
 - Direct benefit transfer can be explored for effective implementation of subsidy
 - Or, operators can be given generation-based incentives linked to household power supply

Policy learnings

- Provide capital subsidy for developing generation asset based on viability gap funding through reverse bidding with a FiT for households
 - Review existing 30 per cent cap on state subsidy to make projects viable at FiT
 - Fix capital cost benchmarks before competitively bidding projects
- Provide funding support for mini-grid distribution network in compliance with grid codes and safety standards through central government-funded electrification schemes (like SAUBHAGYA).
- Define commercial terms of agreement for all possible exist/operational models :
 - Price of assets: Price of mini-grid generation and distribution assets should take into account its residual value. ERCs should provide guidelines / benchmarks to determine the residual value.
 - Tariff for power: Regulations must also be defined by the ERC to indicate the process of determining the tariff rate at which power will be sold to /purchased from the discom.
 The tariffs rates should be based on project cost and levelised cost of energy.
 - Dispute settlement: Mechanisms must be established for timely settlement of commercial disputes between mini-grid developers and discoms.

Thank you.

