

Expediting Implementation of New Norms

Rohit Pathania

About Centre for Science and Environment

Founded in 1980, CSE researches into, advocates for and communicates the urgency of development that is both sustainable and equitable

>165 staff working on a wide array of environment & development issues – water, waste, industrial pollution, climate change, energy, forestry, environmental health etc

Programs to engage, train and communicate with various stakeholders

Publishes India's largest selling Science and Environment Fortnightly

- Down To Earth

Green Rating Project

Green Rating Project (GRP) - public tool to benchmark present industrial performance of industries

Pushes towards desirable goals

Public disclosure crucial – spur credible action

Various sectors covered since 1999 – pulp and paper, chlor alkali, cement, steel

Thermal power one important area – large polluter, much scope for improvement in India (2015)

The Context

New pollution norms

CSE conducted 2-year study of coal-based power sector's operating and environment performance (February 2015)

- Research design and Analysis guided by panel of experts (former CPCB officials, electricity generators, power equipment manufacturers etc)
- Sample: 47 plants comprising 54 GW capacity around half of the thermal power sector capacity in operation at that time
- Diversified by ownership & location
- Unit sizes: 30% -210MW units; 25% 500MW units or larger
- Age 25% past full life (over 25 years); 25% exceeding mid life
- Data collection:
 - participating plants provided detailed operational data; supplemented by environment reports, CEA, tariff applications etc
 - Plant audit and management interviews
 - Survey of neighbouring community, local media, NGOs, employees

New Norms – Overview

- Power sector responsible for inordinate pollution load 30-60% of all major industrial emissions (PM, SO_x and NO_x)
- Draws around 24 BCM annually; around half of TOTAL domestic water use in India
 - Under CREPS, in 2003, industry had committed to improve its env. performance (meeting 100 mg/m³ particulate matter levels; SO_x/NO_x standards to be implemented by 2005/06), BUT made no progress
 - Meanwhile, ECs given since 2008 already require plants to meet tighter PM norms (at 50 mg/m³ for 500 MW size units and space for FGD since 2003)

mg/Nm³	Unit size	Installed before Dec 31st, 2003 *		
PM	All	100	50	30
SO ₂ <500MW		600	600	100
	>=500MW	200	200	100
NO _x	All	600	300	100
Hg	All	0.03 (>500 MW)	0.03	0.03

• Existing plants – comply by Dec 2017

Water Use:

OTC plants convert to CT;

CT plants to cut water use to 3.5 m³/MWh; New plants to use 2.5 m³/MWh

New Norms – Overview

- New norms in line with the global standards.
- China has introduced even tighter standards for metro and highly polluted areas (PM 10 mg/Nm³, SO_x 35 mg/Nm³ and NO_x 50 mg/Nm³).

Global comparison

mg/Nm³	PM	SO ₂	NO _x	
China	10		50	
Japan	50	Permit	200	
USA	14.5	100	110	
EU	30	200	200	

New Norms - Benefits

Reduction in pollution (BAU vs. New norms) assuming generation in 2026-27 as per CEA's draft Electricity policy, December 2016

- Water use 85% reduction largely due to conversion of OTC to CT
- PM emissions 65%
- SO_x over 85%
- NO_x almost 70%

CSE Research and Intervention

- Initially, pushback from industry citing concerns:
 - Technology
 - Tariff recovery/Investments
 - Timelines
- To recommend solutions for the issues inhibiting progress – CSE organized series of meetings and policy workshops during 3Q-4Q 2016
- Engaged with all key stakeholders:
 - MoEF &CC and MoP
 - CPCB and various state PCBs
 - Tariff Regulators: CERC, State ERCs (Haryana and Odisha)
 - Industry: APP, NTPC, Tata Power, Reliance, State power plants
 - Suppliers: BHEL, GE-Alstom, Thermax, Doosan & Mitsubishi
 - Industry experts: Anil Razdan, ex-Power Secretary; DK Jain – ex-NTPC Director
- Several policy recommendations emerged

NEW ENVIRONMENTAL NORMS FOR THE POWER SECTOR

Proceedings and Recommendations of the Stakeholder Workshop Organized by CSE 7 September 2016

Technology

- Pollution control technology mature; suitable for Indian coal; sufficient global supply
- Not a major impediment.
- ESP
 - Vast majority needs fine tuning/minor ESP up-gradations,
 - some may need to add fields
- SO_x
 - FGD only for larger units
 - Other units low cost solutions like partial FGD, limestone injection, etc.
- NO_x
 - Existing boilers burner modification, low NO_x burners, combustion optimization
 - SCR/SNCR will not be necessary for existing power stations

Issues - Timelines

- Timelines were achievable when the norms were announced
- But little progress pre-execution work such as technology identification and tariff application could have been done
- Meeting PM, NOx, water use norms still possible given procurement time of less than 6 months.
 - installation can be done during scheduled shut down or need less than
 1 month shut down
- Procurement of FGD could take up to 24 months.
- Additional time will now be needed

Technology	Construction time	Downtime	
Electrostatic precipitator (ESP)	~ 3–6 months	~ 20–30 days	
Flue gas desulphurization (FGD)	~ 18–24 months	~ 30–90 days	
Selective Catalyst Reduction	~ 5 months	~ 30 days	
Selective Non-Catalyst Reduction	~ 4 months	~ 7 days	
Low NOx burner, OFA etc.	~ 1 month	~ 15–20 days	

Manageable Costs

- CEA/ERC REVISED COSTS ARE LOWER THAN THEIR PRIOR ESTIMATES (40-90 Paisa Per Unit)
- CEA Chaired Committee's estimates of costs and tariff
 - NOx: investment range between Rs 1-10 lakh/MW for boiler upgrade (7 paisa/unit)
 - PM: investment Rs 13 lakh/MW (9 paisa/unit)
 - SOx: investment of Rs 50 lac/MW on FGD (CEA report says 32 paisa/unit based on 15 year life, which is a miscalculation; our estimates is around 20 paisa/unit).
- Importantly, costs are dropping as predicted by CSE. Suppliers have told CSE that FGD bids are 35- 40 lacs/MW. UPRVUNL Harduaganj contract was lower, we believe

Technology required	Approx. cost *
ESP upgradation	Rs 5–15 lakh/MW
Partial FGD	Rs 25–30 lakh/MW
FGD	Rs 40–50 lakh/MW
De-NOx	Rs 10–15 lakh/MW
SCR/SNCR**	Rs 20–25 lakh/MW

^{*} Based on estimates provided by leading global suppliers (GE-Alstom, Mitsubishi, Doosan, Andritz etc)

^{**} SCR/SNCR is not needed for existing capacity

Post Research Developments

Implementation – Status (Recent update)

- Discussions with plants, suppliers, experts etc. indicates unsatisfactory progress.
 - Even the current emissions data of most plants is incorrect
 - Other basic data still unavailable for e.g. changing information about plants that have space for FGD
 - State owned plants don't have sufficient expertise for e.g. to write specs;
 - Crucial step that will allow plants to raise financing
 - Most plants in pipeline are continuing construction without any changes to their plans
 - Retrofitting later may be even more costly
 - Urgent action is required to ensure compliance by plants being commissioned now
- Still no confirmation from CERC that investments in pollution control will be covered under "Change of Law".

Implementation – Positive news

- Few plants making good progress
 - Review of NTPC's Eastern region report showed both positive momentum and also reasonable strategy
 - Some ESPs already upgraded, some in progress
 - Certain old units that can't install FGD to be operated in a "flexible" manner
 - UPRVUNL uploaded FGD in Harduaganj plant; implementation underway for others
- Some progress on tenders being floated for FGDs (Inputs from supplier)
 - Approx. 70 GW for FGD tendering over a 6 month period starting July 2017
 - NTPC announced e-bids of around 17 GW
- Two state PCBs Haryana and MP have expressed interest in working with CSE to track and push implementation.

CEA Report: Requirements

- MoP formed CEA-led Committee (CPCB, NTPC, POSOCO, various ministries) in Sep 2016 to prepare phase-in plan for installing new equipment to meet new norms.
- Findings indicate manageable installation and upgrade requirements

Particulate Matter:

- Two thirds of the capacity meets new PM norms
- Only 25% capacity requires ESP up-gradation
- Another 10% capacity will meet the PM norms after FGD installation

• Oxides of nitrogen: Requires boiler up-gradation—Relatively minor and inexpensive change for most plants; can be done during the next overhaul

CEA: FGD Needs Evolving

- 1st CEA Analysis: 96 GW of capacity (54%) has space for FGD installations
- 2nd CEA Analysis: 123 GW has space for FGD
- Recent update
 - FGD Planned 146 GW
 - Compliant (FGD, CFBC etc.) 16GW
 - Shutter, Non Compliant 25 GW
- Unacceptable that even basic data is unavailable after 2 years
- We believe, based on new information from suppliers, that "space for FGD" is not a problem
 - Ducts can be extended to install FGD at a distance cost of installing new stack will be \$5MM, however, no need for lining the existing stack
 - In US and Europe, 70-80% of FGDs are retrofits. In none of these countries regulations required space to be kept for FGDs.
 - This information has been given by suppliers to CEA/industry

CEA/RPC Plans: Significant Delays

- Preliminary timelines indicated in the REVISED phasing plans prepared by RPCs still have unreasonable timelines
- FGD Only 6GW will install FGD by 2019, rest as late as March 2023
- PM Of 46 GW needing upgrade only 8GW will be done by 2019

Year	ESP	FGD
2017	2.4	-
2018	3.3	-
2019	2.5	6.1
2020	3.6	21.1
2021	2.1	48.6
2022	1.0	31.4
2023	0.4	15.5
Not specified	19.2	-
Total	34.4	122.7

Timelines for ESP upgrades are as per the 1st CEA/RPC analysis; These did not cover approx 40 GW of capacity, of which around 12 GW may need to upgrade their ESP.

Timelines for FGD are as per the 2nd CEA/RPC analysis.

CSE Study: Upcoming Units

- 95% of 73 GW upcoming coal-based units has no plans of pollution control equipment
- 28 GW starting operation this year have already obtained CTOs from PCBs. Gaps in CTO
 - CTO from state PCBs did not ask power stations to adhere to new norms
 - Air Act, 1981 and Water Act, 1974 open ended on when CTO should be issued –
 SPCBs have mostly granted consents
 - Power stations cite difficulty in incorporating changes in designs to accommodate pollution control devices as these in advanced stages

Year	Capacity in MW	
real	Commissioning	
2016		
2017	28,185	
2018	13,935	
2019	6,500	
2020	3,300	
2021	2,640	
NA	5,915	
Total	60,340	

Note: Work is stalled in projects of capacity 12,640 of 72,980 MW

CSE Report: Technology Requirement

Unit size	Unit size distribution in GW				
	+25 years	1990–2003	2004-08	2009–16*	Total
up to 250 MW	28.6	16.3	2.1	5.8	52.8
> 250 and <500 MW	-	5.4	3.8	20.8	30.0
500 MW and above	5.5	9.5	6.0	82.8	103.8
Total	34.1	31.1	11.9	109.4	186.6

- Units over 25 years (34.1 GW capacity) should be shut/replaced with SC
- PM: Post-2008 capacity 50 mg/Nm3 norms for most in EC, therefore only a small fraction (46 GW) needs to upgrade ESP
- SO_x: 103 GW capacity needs to meet tighter standard; FGD installation can be focused on post-2003 larger size units (89 GW)
- NO_x: Not considered a challenge

Recommendations to MoEF

Particulate Matter:

- 115 GW (65%) to comply by December 2017. (CEA report already indicates compliance worst case, some minor upgrades needed)
- Of remaining 65 GW:
 - 46 GW is scheduled (over the next 2 years) for ESP upgradation and 16 GW is expected to comply by installing FGD
 - CSE view: 13 GW is over 25 years old and should be gradually shutdown instead of upgrading ESP or installing FGD

Oxides of Nitrogen:

- Nearly half the capacity should meet NO_X norms by March 2018
 - Annual maintenance plan (AMP) of RPCs for 2017-18 include 82.6
 GW of capacity their outage duration should be expanded as required
- Remaining 50% capacity should be scheduled for outages in the next year's AMP, such as compliance is ensured by December 2018

Recommendations to MoEF

Sulphur Di Oxide:

- 89 GW over 500 MW size units installed in 2004-16 compliance by Dec 2019.
 - About 1/3rd by Dec. 2018; 1/3rd by June 2019 and 1/3rd by Dec. 2019
 - 79 GW has space for FGD; remaining can locate FGD at a distance
- Norms for units of 500 MW and above installed 1990-2003 (9.5 GW) should be relaxed to 600 mg/Nm³; 5.5GW is older than 25 years and should be shut
- Units smaller than 500 MW installed in 1990-2016 (54 GW) some already in compliance, others need additional measures

Water:

- All CT-based plants to comply with water use limits by December 2017
- All old OTC-based plants (11.9 GW) should be shut: Two remaining fresh water OTC-based plants (CSE data; CEA to confirm) MPPGCL,
 Birsinghpur and TNVL, Tenughat to convert to CT by December 2018

Recommendations

• Strengthen Monitoring of Existing Plants:

- Develop baseline emissions data
- CPCB and state PCB should urgently get project status from plants and understand implementation plans/status
- Direct power stations to submit 'Action Plans' within three months for implementation of the new norms
- CPCB and state PCBs need to develop a regular monitoring plan
- Penalties and plan of action should be devised for plants that fall behind schedule
- Any extension in timelines should happen with bank guarantee

Strengthen Monitoring of Upcoming Plants:

- Ensure that plants under construction should meet the standards from day 1 since later modification may be disruptive. (Retrofitting to meet the norms within the next two years may be permitted if there are techno-economic benefits.)
- Review 'consent to operate' and 'EC' document of power stations.

Other Recommendations

Shutting of Old Capacity:

- 34 GW of more than 25 years old should be asked to shut down by 2020 (no need to meet standards)
- Plants with firm retirement/ replacement plans may be allowed to operate in the interim (for maximum 2 years)
- Plants replacing old units with SC/USC units should not need fresh ECs.
- Old plants undertaking life extension works should be required to meet tighter standards

Adjust Existing Norms:

- Stack height regulation meant to disperse SO₂ needs to be revised in light of FGD requirement
- Specific water consumption standards for coastal plants should be different than plants using fresh water. (For coastal plants a low CoC (~2) CT may be recommended specific water consumption of about 10 cu.m/MWh)
- Consider relaxing SO₂ norms to 600 mg/Nm³ for the all over 500 MW size units, installed prior to 2003.

Recommendations: CERC/CEA

Incentives/Relief:

- Urgent confirmation by MoP/CERC that CAPEX for pollution control will be considered under "Change of Law" to calculate tariff.
- CEA needs to promptly prepare a technology benchmark report which ERC/CERC should use as guidance to approve CAPEX
- Dispatch order should be scrupulously followed to ensure cleaner and efficient plants are scheduled first.
- Mechanism of tariff incentives/penalties based on pollution cuts achieved should be established to ensure investments result in tangible/quantifiable benefits.

Pushing for Implementation

- CSE drafted a detailed questionnaire to be filled by plants to track progress shared with State PCBs as well as CPCB.
 - Most State pollution control boards we contacted have not collected data on implementation progress yet
 - Odisha got details; Karnataka tried but didn't get response
- Organized RT with senior PCB officials from states (Odisha, Jharkhand, Chhattisgarh, MP, Maharashtra, Gujarat, TN etc.) with sizable coal capacity
 - Officials have only a basic understanding of pollution control technologies capacity building is essential
- Organized a training program in Bengaluru for mid-level PCB officers of 4 Southern states responsible for monitoring.
- Key conclusion
 - Need to track progress closely
 - PCBs need to develop an enforcement plan (perhaps under CPCB guidance) show cause, committed action plan, bank guarantees etc.

The Pollutants Under Question

PARTICULATE MATTER

Current emission levels: Particulate matter

- Most plants under compliance standards have remained mostly unchanged
- Performance most likely understated 2/3rd in violation (MIT study in Gujarat similar conclusions

Emissions in mg/Nm³	Capacity in MW	Prior 2003	Post 2003	Most ESPs designed to meet 50mg/N.cu.m – however underperforming - largely
0-50	98,548	3,147	95,401	refurbishments required.
50-100	27,335	14,880	12,455	188 GW
100-150	34,173	28,953	5,720	2008 :
150-250	9,553	7,133	2,420	2003: ~86 GW 100 (large)
250-500	8,398	8,398		~62 GW 1989:
500+	2,493	2,493		150 (large); 350(small)

SULPHUR DIOXIDE

Sulphur dioxide - Issue

- Images from Aura Satellite showing increasing sulphur di oxide concentration over India
- India's ambient sulphur dioxide concentration has doubled in seven years

Current emission levels: Sulphur dioxide

- Only 35 percent has reported emissions over 600 mg/N.cu.m.
- Data appears grossly under-reported

Source: Central Pollution Control Board, 2017

OXIDES OF NITROGEN

Current emission levels: Oxides of nitrogen

- Large number of boilers supplied since 2000, especially units of size 500 MW and above, have low NO_x burner designs and can operate with emissions less than 400 mg/N.cu.m
- Emissions levels with reasonable control strategy over-fire air systems, optimized operation etc. is less than 300 mg/N.cu.m experts
- Co-benefit improved efficiency, low coal use
- Data appears grossly under-reported

Next Steps by CSE

On the ground engagement

- CSE believes that close hand-holding is required to expedite implementation of the new norms.
- We are planning to target 3-4 states to start can be model for other states

State	Total Capacity in GW	FGD requirement	ESP up- gradations	Retire
Chhattisgarh	20	12	5	3
Madhya Pradesh	17	13.5	2.5	1
Uttar Pradesh	20	9 + 0.5 (has FGD)	6.5	4
Haryana	5.4	2.7 + 1.2 (has FGD)	1.1	0.4

Our Strategy

Survey

- Visit plants to review progress; be in constant touch with plants provide technical assistance, get data on progress and be in touch with plants
- Organize meetings with PCB officers and CSE along with empanelled industry experts to review progress, address issues faced by PCB/plants,
- CSE will prepare a report summarizing issues and suggested action steps for PCBs to enable timely implementation
- Work with a sample of plants to directly assist in implementation review consultant report, give independent advice (panel of CSE experts) – target of around 15 plants
- Act as coordinating person to help PCB or plants get advice from panel of independent experts on questions regarding technology etc.

Training and Capacity Building

The Aim:

To enable officers to better monitor installation of new technologies including CEMS to ensure compliance with new norms

- The program as per timelines, aims to cover:
 - Overview of standards overall emissions, compliance levels, health impacts, rationale and benefits
 - Comprehensive review of technology options for the 3 key pollutants -PM, SOx and NOx
 - Assessing project plans of plants
 - Overview of monitoring methods/protocols,
 - Overview of CEMS issues with installation; gaps in CEMS ecosystem/ infrastructure (certification, calibration); data connectivity/reliability and reporting,
 - Enforcement and compliance issues
 - Site visit

THANK YOU