<u>CSE's roundtable</u> <u>on</u> Improving Energy Access: Evolving role of Mini-grids

Solarization of pumps to improve water and electricity access

Neha Durga
International Water Management Institute (IWMI)
29th May 2018

Growth of Solar Pumps Threat and Opportunity

Cumulative Solar Pumps Installed till Dec 2017

- Solar Pumps are growing at a CAGR of 65 percent
- Dropping cost, increased affordability with 75-90 percent capital subsidies by center and state
- Farmers value irrigation control- Surface water to Groundwater Irrigation, solar pumps give them ultimate control
- They can irrigate in day time, whenever they need to, not when there is water in canal or when there electricity
- But since there is no marginal cost to pumping, farmers will have no incentive to econon on energy-water use. Is it a curse or a blessing?

Energy Divide Map

Groundwater Map

Energy Consumption

Nater Scarce and Electricity Abundant Regions

- Solarize electric pumps and net-meter them
- Allow farmers to generate their own power, sell excess power to grid at a remunerative tariff
- Institutionalize by making feeder level solar cooperatives
- Power utilities to give long term power purchase guarantee at this tariff
- The tariff can govern groundwater demand and terms of trade in local irrigation service markets
- Tariff to represent the "Right" scarcity value of energy and water

India's First Solar Cooperative was set up in Dhundi Village in Early 2016

- Already SKY and KUSUM Schemes have been announced
- Discussions on institutional models for Feeder Level Solar Cooperatives

Water Abundant Energy Scarce Eastern India

Chakhaji, Samastipur, Bihar 220 cultivators,115 acres, 2600 plots

- The eastern regions, the well density is high but there is scarcity of affordable energy
- High land fragmentation, scarcity of land and expensive diesel irrigation has resulted in low productivity agriculture
- Yield and cropping intensity, both are low compared neighboring W Bengal
- The need is to catalyze competitive irrigation service markets.
- Irrigation Service Markets thrived in western India owing to flat rat and cheaper electricity and available surplus with farmers.
- Due to low margins on diesel irrigation sale and well-owner centric markets, ISMs were present in eastern India, but they never thrived
- Solar Power Irrigation service providers could catalyze the much ne ISMs to energize Bihar's Agriculture Chakhaji Pilot

iesel ISM

5 HP Surface Diesel Pump
Flexible Pipes
Rs 40/Katha or Rs 120/hr
Does not work in pre-monsoon season
Av. # of buyers/seller 41
Hours for own irrigation/seller 180
Hours of irrigation sold/seller 699

Solar ISM

- 5 HP Submersible Solar Pump
- 1000 ft buried pipelines, split in different directions
- Rs 20/katha or Rs 90-100/hr
- Works in pre-monsoon season
- Av. # of buyers/seller 81
- Hours for own irrigation/seller 207
- Hours of irrigation sold/seller 2064

Existing Solar Pump Policy Vs ISP Model

- 2-3 kWp Solar Pumps at 90 percent subsidy Individual Pumps, largely not usable in premonsoon
- Higher subsidy, limits number of beneficiaries
- Underground pipeline is not included because the objective is individual use
- Access and affordability is improved only for limited solar pump owners

- 5 HP 5 kWp Pumps at 40 percent subsidy with loan component.
- Usable through out the season
- Subsidy is transferred to the water buyers in ter of availability of cheaper and reliable irrigation
- Water distribution system- underground pipelin ensures less losses due to leakage and creates a environment of water selling business
- Access and affordability trickles down to water buyers
- Eventually connect the solar pumps to a local microgrid or a set-up an entire feeder

In a country where majority of the farmers are water buyers, incentivizing well/pump owners to sell water can increase access and creating competition amongst sellers will create affordability

Stage 1

- Build a cluster of ISPs –
 Competitive ISM
- Affordable and accessible water for irrigation/drinking

Stage 2

- Develop a cluster of villages with flourishing ISMs
 - Faster knowledge transfer amongst villagers
 - Local capacity building will happen because of the increased and concentrated demand of maintenance

Stage 3

- Use solar pumps to sell back surplus electricity via dedicated feeders (if domestic electricity supply infrastructure is developed) or;
 - Solar Pumps to energise microgrids

Thank you

For More Information nehadurga21@gmail.com n.durga@cigar.org